Afficher la notice abrégée

dc.contributor.authorEl Kaoutit Zerri, Laiachi 
dc.contributor.authorSaracco, Paolo
dc.date.accessioned2025-01-08T07:29:50Z
dc.date.available2025-01-08T07:29:50Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/10481/98606
dc.description.abstractGiven a finitely generated and projective Lie–Rinehart algebra, we show that there is a continuous homomorphism of complete commutative Hopf algebroids between the completion of the finite dual of its universal enveloping Hopf algebroid and the associ- ated convolution algebra. The topological Hopf algebroid structure of this convolution algebra is here clarified, by providing an explicit description of its topological antipode as well as of its other structure maps. Conditions under which that homomorphism becomes an homeomorphism are also discussed. These results, in particular, apply to the smooth global sections of any Lie algebroid over a smooth (connected) manifold and they lead a new formal groupoid scheme to enter into the picture. In the appen- dices we develop the necessary machinery behind complete Hopf algebroid constructions, which involves also the topological tensor product of filtered bimodules over filtered rings.es_ES
dc.language.isoenges_ES
dc.publisherCommunications in Contemporary Mathematics World Scientific Publishing Companyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleTopological tensor product of bimodules, complete Hopf algebroids and convolution algebrases_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttp://dx.doi.org/10.1142/S0219199718500153


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional