• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a Reliable Comparison and Evaluation of Network Intrusion Detection Systems Based on Machine Learning Approaches

[PDF] Main article (487.5Kb)
Identificadores
URI: https://hdl.handle.net/10481/98543
DOI: 10.3390/app10051775
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Magán-Carrión, Roberto; Urda, Daniel; Díaz-Cano, Ignacio; Dorronsoro, Bernabé
Editorial
MDPI
Materia
network intrusion detection
 
NIDS
 
machine learning
 
attack detection
 
communications networks
 
methodology
 
Fecha
2020-03-04
Referencia bibliográfica
R. Magán-Carrión, D. Urda, I. Díaz-Cano, and B. Dorronsoro, “Towards a Reliable Comparison and Evaluation of Network Intrusion Detection Systems Based on Machine Learning Approaches,” Applied Sciences, vol. 10, no. 5, Art. no. 5, Jan. 2020, doi: .
Resumen
Presently, we are living in a hyper-connected world where millions of heterogeneous devices are continuously sharing information in different application contexts for wellness, improving communications, digital businesses, etc. However, the bigger the number of devices and connections are, the higher the risk of security threats in this scenario. To counteract against malicious behaviours and preserve essential security services, Network Intrusion Detection Systems (NIDSs) are the most widely used defence line in communications networks. Nevertheless, there is no standard methodology to evaluate and fairly compare NIDSs. Most of the proposals elude mentioning crucial steps regarding NIDSs validation that make their comparison hard or even impossible. This work firstly includes a comprehensive study of recent NIDSs based on machine learning approaches, concluding that almost all of them do not accomplish with what authors of this paper consider mandatory steps for a reliable comparison and evaluation of NIDSs. Secondly, a structured methodology is proposed and assessed on the UGR’16 dataset to test its suitability for addressing network attack detection problems. The guideline and steps recommended will definitively help the research community to fairly assess NIDSs, although the definitive framework is not a trivial task and, therefore, some extra effort should still be made to improve its understandability and usability further.
Colecciones
  • DTSTC - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias