Mostrar el registro sencillo del ítem

dc.contributor.authorBalderas Ruíz, Luis
dc.contributor.authorLastra Leidinger, Miguel 
dc.contributor.authorBenítez Sánchez, José Manuel 
dc.date.accessioned2025-01-07T11:03:14Z
dc.date.available2025-01-07T11:03:14Z
dc.date.issued2025-01-03
dc.identifier.citationBalderas Ruíz, L. & Lastra Leidinger, M. & Benítez Sánchez, J.M. Appl. Sci. 2025, 15, 390 [https://doi.org/10.3390/app15010390]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98483
dc.description.abstractLarge Language Models (LLMs) like BERT have gained significant prominence due to their remarkable performance in various natural language processing tasks. However, they come with substantial computational and memory costs. Additionally, they are essentially black-box models, being challenging to explain and interpret. In this article, Persistent BERT Compression and Explainability (PBCE) is proposed, a Green AI methodology to prune BERT models using persistent homology, aiming to measure the importance of each neuron by studying the topological characteristics of their outputs. As a result, PBCE can compress BERT significantly by reducing the number of parameters (47% of the original parameters for BERT Base, 42% for BERT Large). The proposed methodology has been evaluated on the standard GLUE Benchmark, comparing the results with state-of-the-art techniques achieving outstanding results. Consequently, PBCE can simplify the BERT model by providing explainability to its neurons and reducing the model’s size, making it more suitable for deployment on resource-constrained devices.es_ES
dc.description.sponsorshipProject with reference PID2020-118224RB-100 (funded by MICIU/AEI/10.13039/501100011033)es_ES
dc.description.sponsorshipProject PID2023-151336OB-I00 granted by the Spanish Ministerio de Ciencia, Innovación y Universidadeses_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBERT compressiones_ES
dc.subjectGreen AIes_ES
dc.subjectpersistent homologyes_ES
dc.titleA Green AI Methodology Based on Persistent Homology for Compressing BERTes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/app15010390
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional