Afficher la notice abrégée

dc.contributor.authorŠlepavičius, Justinas
dc.contributor.authorPatti, Alessandro 
dc.contributor.authorAvendaño, Carlos
dc.date.accessioned2025-01-07T07:19:53Z
dc.date.available2025-01-07T07:19:53Z
dc.date.issued2024
dc.identifier.citationPhysics of Fluids, accepted manuscriptes_ES
dc.identifier.urihttps://hdl.handle.net/10481/98413
dc.description.abstractIn our previous work [J. Chem. Phys. 159, 024127 (2023)], we applied three Machine Learning (ML) models to predict the self-diffusion coefficient of spherical particles interacting via the Mie potential. Here, we introduce an optimization approach using the so-called Statistical Associating Fluid Theory for Mie segments (SAFT-VR Mie) and available vapor-liquid equilibria data to obtain molecular parameters for both Mie and LennardJones potentials to describe the diffusion coefficient of 16 molecules described as a single sphere. Our ML models utilize these molecular parameters to predict the self-diffusion of these molecules. We conduct a comparative analysis between the molecular parameters derived from our thermodynamic approach and those obtained through direct fitting of the experimental self-diffusion coefficients. Our findings indicate that the predictive accuracy remains largely unaffected by the specific repulsive and attractive exponents of the Mie potential employed, provided that the fitting of the molecular parameters is precise. The Mie parameters obtained within a thermodynamic framework exhibit a higher coefficient of determination (R2) and absolute average relative deviation (AARD) values compared to those derived from molecular parameters derived from fitting the self-diffusion coefficient, indicating their superior precision at higher values of the self-diffusion coefficient. Despite this discrepancy, the overall precision of both methodologies remains comparable. Given the abundance of precise thermodynamic data in contrast to self-diffusion data, we advocate the thermodynamic fitting approach as the preferred method for acquiring accurate Mie coefficients, essential to predict self-diffusion coefficients with ML and semi-empirical models.es_ES
dc.description.sponsorshipUK Engineering and Physical Sciences Research Council (EPSRC) through an Industrial Cooperative Award in Science & Technology (ICASE) co-funded by IBM, project ID 2327699 - EP/T517689/1es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 and ERDF A way of making Europe (grant PID2022-136540NB-I00)es_ES
dc.description.sponsorshipAndalucía - Consejería de Universidad, Investigación e Innovación (grant P21_00015)es_ES
dc.description.sponsorshipNextGenerationEU/PRTR (María Zambrano Senior fellowship)es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectMachine learninges_ES
dc.subjectMie fluidses_ES
dc.subjectMolecular Dynamics es_ES
dc.titlePredicting self-diffusion coefficients of small molecular fluids using machine 2 learning and the statistical associating fluid theory for Mie segmentses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]
[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License