Mostrar el registro sencillo del ítem

dc.contributor.authorValkhiria Meruvia Rojas, Yumeida
dc.contributor.authorMolina Montes, María Ester 
dc.contributor.authorHernández Laguna, Alfonso
dc.contributor.authorSainz Díaz, Claro Ignacio
dc.date.accessioned2024-12-20T07:55:58Z
dc.date.available2024-12-20T07:55:58Z
dc.date.issued2024-12-04
dc.identifier.citationMeruvia Rojas, Y.V. et. al. Journal of Molecular Modeling (2025) 31:5. [https://doi.org/10.1007/s00894-024-06210-w]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98318
dc.description.abstractContext Lenalidomide (LEN) is used for the treatment of myeloma blood cancer disease. It has become one of the most efficient drugs to halt this disease. LEN is a low-soluble drug in aqueous media. The search of a pharmaceutical preparation to improve the bioavailability and, therefore, to optimize its efficiency is an important issue for pharmaceutical industries and health care. The use of natural excipients such as montmorillonite (MNT) can provide changes in the physical–chemical properties for improving the bioavailability of this drug. We present the first computational study at the atomic scale of the periodic crystal forms of the polymorphs for this anticancer drug, highly demanded in the pharmacy market. In addition, we propose a pharmaceutical preparation by intercalation of LEN in natural MNT. So, our calculations predict that LEN can be intercalated in the interlayer space of MNT, and be released in aqueous media, and physiological aqueous media in consequence. This release process is a more exothermic reaction than the unpacking energy of any of its polymorphs. Besides, the infrared spectra of the LEN molecule and its crystal polymorphs, and LEN intercalated in the confined space of MNT, have been calculated at different levels of theory. The band frequencies have been assigned, matching with the experimental bands, predicting the use of this technique for experimental studies. Method In this work, the method is aimed to explore this research at the atomic and molecular level by using computational modelling methods including INTERFACE FF and other FF along with quantum mechanical calculations ( Dmol3 and CASTEP) of 3-D periodical systems applying periodical boundary conditions. Models of the isolated molecule and two polymorphs of the crystal structures, with the model of bulk water and LEN intercalated in the MNT model, have been considered. An analysis of the intermolecular interactions is accomplished.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Naturees_ES
dc.description.sponsorshipEuropean COST Actions CA17120es_ES
dc.description.sponsorshipDYNALIFE supported by the EU Framework Programme Horizon 2020es_ES
dc.description.sponsorshipJAEINT_22_00028 project of Spanish Science and Innovation Ministry project PID2022-137603OB-I00es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLenalidomidees_ES
dc.subjectMultiple myelomaes_ES
dc.subjectSmectitees_ES
dc.titleIntercalation of the anticancer drug lenalidomide into montmorillonite for bioavailability improvement: a computational studyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00894-024-06210-w
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional