• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Comunicaciones Congresos, Conferencias, ...
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Comunicaciones Congresos, Conferencias, ...
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Key work paper “A Methodology to Quickly Perform Opinion Mining and Build Supervised Datasets Using Social Networks Mechanics”

[PDF] Manuscrito Aceptado (321.4Kb)
Identificadores
URI: https://hdl.handle.net/10481/98314
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Castro Peña, Juan Luis; Francisco Aparicio, Manuel
Editorial
CAEPIA
Fecha
2024-06
Referencia bibliográfica
Francisco, M. and Castro, J.L. Key work paper “A Methodology to Quickly Perform Opinion Mining and Build Supervised Datasets Using Social Networks Mechanics”. Caepia 2024, XX Conferencia de la Asociación Española para la Inteligencia Artificial, 385-387, 2024.
Resumen
Social Networking Sites (SNS) offer a full set of possibilities to perform opinion studies such as polling or market analysis. Normally, artificial intelligence techniques are applied, and they often require supervised datasets. The process of building them is complex, time-consuming and expensive. In this paper, it is proposed to assist the labelling task by taking advantage of social network mechanics. In order to do that, it is introduced the co-retweet relation to build a graph that allows to propagate user labels to their similarity neighbourhood. Therefore, it is possible to build supervised datasets with significant less human effort and with higher accuracy than other weak-supervision techniques. The proposal was tested with 3 datasets labelled by an expert committee, and results showed that it outperforms other weak-supervision techniques. This methodology may be adapted to other social networks and topics, it is relevant for applications like informed decision-making (e.g. content moderation), specially when interpretability is required.
Colecciones
  • DCCIA - Comunicaciones Congresos, Conferencias, ...

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias