• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: GRIDE. Dispositivos Electrónicos (TIC105)
  • TIC105 - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: GRIDE. Dispositivos Electrónicos (TIC105)
  • TIC105 - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A method for the lifetime sensorless estimation of surface and core temperature in lithium-ion batteries via online updating of electrical parameters

[PDF] A method for the lifetime sensorless estimation of surface and core temperature in lithium-ion batteries via online updating of electrical parameters.pdf (3.710Mb)
Identificadores
URI: https://hdl.handle.net/10481/98252
DOI: 10.1016/j.est.2022.106260
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Rodríguez Iturriaga, Pablo; Anseán, David; López Villanueva, Juan Antonio; González, Manuela; Rodríguez Bolívar, Salvador
Editorial
Elsevier
Date
2023
Referencia bibliográfica
Journal of Energy Storage 58: 106260
Abstract
Online temperature estimates are essential to the thermal monitoring and control of battery cells for battery management systems (BMSs). Due to hardware limitations, there has been a surge in interest in sensorless approaches for both surface and core temperatures. On this account, several methods have been proposed in the literature for the coestimation of state of charge (SOC) and temperature via RC-based electrical and thermal models and Extended Kalman Filters (EKFs). However, the stability and reliability of these schemes over the complete cell lifetime, when the effects of battery aging become apparent, have not been addressed thoroughly. In this article, a dual state-parameter estimation is carried out on an enhanced equivalent circuit model to coestimate the SOC and SOH on a commercial nickel-rich, silicon–graphite cell throughout its entire lifetime. A thermal model has been characterized based on the previous electrical model for the estimation of surface and core temperature of the cell. The continuous updating and correction of electrical parameters prove to be critical for temperature estimations to remain accurate in the long run, yielding a root mean square error (RMSE) in surface temperature below 1.2 °C for as long as 800 cycles.
Collections
  • TIC105 - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback