Afficher la notice abrégée

dc.contributor.authorLópez Pérez, Ginés 
dc.contributor.authorLangemets, Johann
dc.date.accessioned2024-12-18T12:30:41Z
dc.date.available2024-12-18T12:30:41Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/10481/98237
dc.description.abstractWe prove that every separable Banach space containing `1 can be equivalently renormed so that its bidual space is octahedral, which answers, in the separable case, a question in Godefroy (1989) [5]. As a direct consequence, we obtain that every dual Banach space, with a separable predual, failing to be strongly regular (that is, without convex combinations of slices with diameter arbitrarily small for some closed, convex and bounded subset) can be equivalently renormed with a dual norm to satisfy the strong diameter two property (that is, such that every convex combination of slices in its unit ball has diameter two).es_ES
dc.description.sponsorshipThe work of J. Langemets was supported by the Estonian Research Council grant (PUTJD702) and by institutional research funding IUT (IUT20-57) of the Estonian Ministry of Education and Research. The work of G. L opez-P erez was supported by MINECO (Spain) Grant MTM2015-65020-P and by Junta de Andaluc a Grant FQM-0185.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.titleBidual octahedral renormings and strong regularity in banach spaceses_ES
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionAOes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NoDerivatives 4.0 Internacional