Mostrar el registro sencillo del ítem

dc.contributor.authorRoselló Casado, Eros
dc.contributor.authorGómez García, Ángel Manuel 
dc.contributor.authorLópez Espejo, Iván
dc.contributor.authorPeinado Herreros, Antonio Miguel 
dc.contributor.authorMartín Doñas, Juan Manuel
dc.date.accessioned2024-12-18T09:57:14Z
dc.date.available2024-12-18T09:57:14Z
dc.date.issued2024-09
dc.identifier.citationRosello, E., Gomez, A.M., López-Espejo, I., Peinado, A.M., Martín-Doñas, J.M. (2024) Anti-spoofing Ensembling Model: Dynamic Weight Allocation in Ensemble Models for Improved Voice Biometrics Security. Proc. Interspeech 2024, 497-501, doi: 10.21437/Interspeech.2024-403es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98178
dc.description.abstractThis paper proposes an ensembling model as spoofed speech countermeasure, with a particular focus on synthetic voice. Despite the recent advances in speaker verification based on deep neural networks, this technology is still susceptible to various malicious attacks, so that some kind of countermeasures are needed. While an increasing number of anti-spoofing techniques can be found in the literature, the combination of multiple models, or ensemble models, still proves to be one of the best approaches. However, current iterations often rely on fixed weight assignments, potentially neglecting the unique strengths of each individual model. In response, we propose a novel ensembling model, an adaptive neural network-based approach that dynamically adjusts weights based on input utterances. Our experimental findings show that this approach outperforms traditional weighted score averaging techniques, showcasing its ability to adapt to diverse audio characteristics effectively.es_ES
dc.language.isoenges_ES
dc.publisherInterspeech 2024es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdeep learninges_ES
dc.subjectanti-spoofinges_ES
dc.subjectensemble modeles_ES
dc.subjectfake audioes_ES
dc.titleAnti-spoofing Ensembling Model: Dynamic Weight Allocation in Ensemble Models for Improved Voice Biometrics Securityes_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.21437/Interspeech.2024-403
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional