Mostrar el registro sencillo del ítem
Implementation of Markov Decision Processes into quantum algorithms for reinforcement learning
| dc.contributor.author | Pegalajar Cuéllar, Manuel | |
| dc.contributor.author | Pegalajar Palomino, María del Carmen | |
| dc.contributor.author | Baca Ruiz, Luis Gonzaga | |
| dc.contributor.author | Navarro Garulo, Gabriel | |
| dc.contributor.author | Cano Gutiérrez, Carlos | |
| dc.contributor.author | Servadei, Lorenzo | |
| dc.date.accessioned | 2024-12-17T12:05:53Z | |
| dc.date.available | 2024-12-17T12:05:53Z | |
| dc.date.issued | 2023-07-29 | |
| dc.identifier.citation | Pegalajar, M.P., Pegalajar, M.C., Ruiz, L.G.B., Navarro, G., Cano, C., Servadei, L., Implementation of Markov Decision Processes into quantum algorithms for reinforcement learning, 1st European Workshop on Quantum Artificial Intelligence, Naples (Italiy), 28-29 July 2023, pp.1-3 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/98141 | |
| dc.description.abstract | In this work, we propose a methodology to implement classic Markov Decision Processes in a Quantum Computing paradigm, as a first step to achieve systems running Quantum Reinforcement Learning where both agent and environment are expressed as quantum programs. To do so, we analyze the interaction cycle between the agent and the environment in classic reinforcement learning and create a method to map a Markov Decision Process with discrete state space, action set, and rewards, into a quantum program. | es_ES |
| dc.description.sponsorship | This article was supported by the project QUANERGY (Ref. TED2021-129360B-I00), Ecological and Digital Transition R&D projects call 2022 funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | University of Naples Federico II | es_ES |
| dc.subject | quantum reinforcement learning | es_ES |
| dc.subject | quantum machine learning | es_ES |
| dc.title | Implementation of Markov Decision Processes into quantum algorithms for reinforcement learning | es_ES |
| dc.type | conference output | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.type.hasVersion | AM | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.