Mostrar el registro sencillo del ítem

dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.contributor.authorPegalajar Palomino, María del Carmen
dc.contributor.authorBaca Ruiz, Luis Gonzaga 
dc.contributor.authorCano Gutiérrez, Carlos 
dc.date.accessioned2024-12-17T11:52:35Z
dc.date.available2024-12-17T11:52:35Z
dc.date.issued2023-06-20
dc.identifier.citationCuéllar, M.P., Pegalajar, M.C., Ruiz, L.G.B., Cano, C. (2023). Time Series Forecasting with Quantum Neural Networks. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_53es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98138
dc.description.abstractIn this work we explore the use of Quantum Computing for Time Series forecasting. More speci cally, we design Variational Quantum Circuits as the quantum analogy of feedforward Artificial Neural Networks, and use a quantum neural network pipeline to perform time series forecasting tasks. According to our experiments, our study suggests that Quantum Neural Networks are able to improve results in error prediction while maintaining a lower number of parameters than its classical machine learning counterpart.es_ES
dc.description.sponsorshipThis article was supported by the project QUANERGY (Ref. TED2021-129360B-I00), Ecological and Digital Transition R&D projects call 2022 funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR, and Grant PID2021-128970OA-I00 by MCIN/AEI/10.13039/501100011033/FEDERes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQuantum Neural Networkses_ES
dc.subjectQuantum Machine Learninges_ES
dc.subjectTime Series Forecastinges_ES
dc.titleTime Series forecasting with Quantum Neural Networkses_ES
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/978-3-031-43085-5_53
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional