Mostrar el registro sencillo del ítem

dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.contributor.authorBaca Ruiz, Luis Gonzaga 
dc.contributor.authorPegalajar Palomino, María del Carmen
dc.date.accessioned2024-12-17T11:48:00Z
dc.date.available2024-12-17T11:48:00Z
dc.date.issued2024-10-26
dc.identifier.citationCuellar, M.P., Ruiz, L.G.B., Pegalajar, M.C. (2025). Implementation of Classical Decision Trees in a Quantum Computing Paradigm. In: Quintián, H., et al. Hybrid Artificial Intelligent Systems. HAIS 2024. Lecture Notes in Computer Science, vol 14857. Springer, Cham. https://doi.org/10.1007/978-3-031-74183-8_19es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98137
dc.description.abstractDecision trees are widely known models in Supervised Machine Learning with efficient inference mechanisms and outstanding interpretability. In this article, we design the implementation of classical Inductive Decision Trees under a quantum computing paradigm, and explore the advantages of Quantum Decision Trees designed in the presence of missing and uncertain data. Our findings extend to quantum ensembles analogous to Decision Forests as a Quantum Machine Learning method to improve the interpretability of a type of variational quantum circuits. Our approach provides an improvement in efficiency in the case of probabilistic inference with respect to the classical counterpart, and a general methodology is designed to address multiple classification tasks with Quantum Machine Learning tools, with a focus on the interpretability of quantum models. The theoretical results are supported by experimental simulations using di erent data sets and state-of-the-art examples.es_ES
dc.description.sponsorshipThis article was funded by the project QUANERGY (Ref. TED2021-129360B-I00), Ecological and Digital Transition R&D projects call 2022 by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTR.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQuantum Decision Treees_ES
dc.subjectQuantum Decision Forestses_ES
dc.subjectQuantum Machine Learninges_ES
dc.titleImplementation of Classical Decision Trees in a Quantum Computing paradigmes_ES
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/978-3-031-74183-8_19
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional