Mostrar el registro sencillo del ítem

dc.contributor.authorCastro Peña, Juan Luis 
dc.contributor.authorMartinez Soriano, Ignacio
dc.contributor.authorFernéndez Breis, Jesualdo
dc.contributor.authorSan Román, Ignacio
dc.contributor.authorAlonso Barriaso, Adrián
dc.contributor.authorGuevara Baraza, David
dc.date.accessioned2024-12-16T08:05:45Z
dc.date.available2024-12-16T08:05:45Z
dc.date.issued2019-08-05
dc.identifier.citationI. Martinez Soriano, J. L. Castro Peña, J. T. Fernandez Breis, I. San Román, A. Alonso Barriuso and D. Guevara Baraza, "Snomed2Vec: Representation of SNOMED CT Terms with Word2Vec," 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), Cordoba, Spain, 2019, pp. 678-683, doi: 10.1109/CBMS.2019.00138.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98025
dc.description.abstractHospital Information Systems (H.I.S) use Electronic Health Record to store heterogeneous data from the patients. One important goal in this kind of systems is that the information must be, normalized and codify with a clinical terminology to represent exactly the healthcare meaning. Usually this process need human experts to identify and map the correct concept, this is a slow and tedious task. One of the most widespread clinical terminologies with more projection is Snomed-CT. This is an ontology multilingual clinical terminology that represent the clinical concepts with a unique code. We introduce in this paper Snomed2Vec, new approach of semantic search tool to find the most similar concepts using Snomed-CT. This is an ontology based named entity recognition system using word embedding, that suggest what is the most similar concept, that appear in a text. To evaluate the tool we suggest two kind of validations, one against a corpus gold with diagnostic from clinical reports, and a social validation, with a public free web access. We publish an access web to the academic world to use, test and validate the tool. The results of validation shows that this process help to the specialist to the election of choose the correct concepts from Snomed-CT. The paper illustrates 1) how create the initial big corpus of texts, to train the word2vec models, 2) how we use this vector space model to create our final Snomed2Vec vector space model, 3) The use of the cosine similarity distance, to obtain the most similar concepts, grouping by the hierarchies from Snomed-CT. We publish to the academic world: https://github.com/NachusS/Snomed2Vec access to the public web tool, and the notebook, for develop and test this paper.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectword2veces_ES
dc.subjectsnomed CTes_ES
dc.subjectsemantic similarityes_ES
dc.subject,word embeddinges_ES
dc.subjectontology matchinges_ES
dc.subjectnamed entity recognitiones_ES
dc.titleSnomed2Vec: representation of SNOMED CT terms with Word2Veces_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/CBMS.2019.00138
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License