• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Methodology to Quickly Perform Opinion Mining and Build Supervised Datasets Using Social Networks Mechanics

[PDF] Artículo aceptado (1.827Mb)
Identificadores
URI: https://hdl.handle.net/10481/98017
DOI: 10.1109/TKDE.2023.3250822
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Castro Peña, Juan Luis; Francisco Aparicio, Manuel
Materia
Human-in-the-loop labelling
 
Opinion mining
 
Social network analysis
 
Supervised learning
 
User profiling
 
Fecha
2023-03-01
Referencia bibliográfica
M. Francisco and J. L. Castro, "A Methodology to Quickly Perform Opinion Mining and Build Supervised Datasets Using Social Networks Mechanics," in IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 9, pp. 9797-9808,.
Resumen
Social Networking Sites (SNS) offer a full set of possibilities to perform opinion studies such as polling or market analysis. Normally, artificial intelligence techniques are applied, and they often require supervised datasets. The process of building these is complex, time-consuming and expensive. In this paper, we propose to assist the labelling task by taking advantage of social network mechanics. In order to do that, we introduce the co-retweet relation to build a graph that allows us to propagate user labels to their similarity neighbourhood. Therefore, it is possible to iteratively build supervised datasets with significant less human effort and with higher accuracy than other weak-supervision techniques. We tested our proposal with 3 datasets labelled by an expert committee, and results shows that it outperforms other weak-supervision techniques. This methodology may be adapted to other social networks and topics, and it is relevant for applications like informed decision-making (e.g., content moderation), specially when interpretability is required.
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias