Mostrar el registro sencillo del ítem

dc.contributor.authorAbadía Tercedor, Ignacio 
dc.contributor.authorNaveros Arrabal, Francisco 
dc.contributor.authorGarrido Alcázar, Jesús Alberto 
dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorLuque Sola, Niceto Rafael 
dc.date.accessioned2024-12-13T07:50:02Z
dc.date.available2024-12-13T07:50:02Z
dc.date.issued2021-05
dc.identifier.citationPublished version: I. Abadía, F. Naveros, J. A. Garrido, E. Ros and N. R. Luque, "On Robot Compliance: A Cerebellar Control Approach," in IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2476-2489, May 2021, doi: 10.1109/TCYB.2019.2945498es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97970
dc.descriptionThe work of I. Abadía was supported by U. Granada and Junta Andalucía-FEDER. The work of F. Naveros and E. Ros were supported by the Spanish National Grant (MINECO-FEDER TIN2016-81041-R) and the EU HBP-SGA2, (H2020-RIA, 785907). The work of N. R. Luque was supported by a Juan de la Cierva Spanish fellowship (IJCI-2016-27385)es_ES
dc.descriptionVersión de submissiones_ES
dc.description.abstractThe work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque driven control. The spiking cerebellar controller provides torque commands allowing for accurate and coordinated arm movements. To compute these output motor commands, the spiking cerebellar controller receives the robot’s sensorial signals, the robot’s goal behaviour, and an instructive signal. These input signals are translated into a set of evolving spiking patterns, representing univocally a specific system state at every point of time. Spike Timing-Dependent Plasticity (STDP) is then supported, allowing for building adaptive control. The spiking cerebellar controller continuously adapts the torque commands provided to the robot from experience as STDP is deployed. Adaptive torque commands, in turn, help the spiking cerebellar controller to cope with built-in elastic elements within the robot’s actuators mimicking human muscles (inherently elastic). We propose a natural integration of a bio-inspired control scheme, based on the cerebellum, with a compliant robot. We prove that our compliant approach outperforms the accuracy of the default factory installed position control in a set of tasks used for addressing cerebellar motor behaviour: controlling six degrees of freedom (DoF) in (i) smooth movements, (ii) fast ballistic movements and (iii) unstructured scenario compliant movements.es_ES
dc.description.sponsorshipUniversidad de Granadaes_ES
dc.description.sponsorshipJunta Andalucíaes_ES
dc.description.sponsorshipFEDERes_ES
dc.description.sponsorshipMINECO-FEDER TIN2016-81041-Res_ES
dc.description.sponsorshipEU HBP-SGA2, (H2020-RIA, 785907)es_ES
dc.description.sponsorshipJuan de la Cierva (IJCI-2016-27385)es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleOn robot compliance. A cerebellar control approaches_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/785907es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TCYB.2019.2945498
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional