Mostrar el registro sencillo del ítem

dc.contributor.authorGámiz Pérez, María Luz 
dc.contributor.authorNavas-Gómez, Fernando
dc.contributor.authorNozal Cañadas, Rafael Adolfo
dc.contributor.authorRaya Miranda, Rocío 
dc.date.accessioned2024-12-12T08:44:16Z
dc.date.available2024-12-12T08:44:16Z
dc.date.issued2024-12-11
dc.identifier.citationGámiz et al. (2024) Towards the Best Solution for Complex System Reliability: Can Statistics Outperform Machine Learning? Machines, 12, 909es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97928
dc.description.abstractStudying the reliability of complex systems using machine learning techniques involves facing a series of technical and practical challenges, ranging from the intrinsic nature of the system and data to the difficulties in modeling and effectively deploying models in real-world scenarios. This study compares the effectiveness of classical statistical techniques and machine learning methods for improving complex system analysis in reliability assessments. Our goal is to show that in many practical applications, traditional statistical algorithms frequently produce more accurate and interpretable results compared with black-box machine learning methods. The evaluation is conducted using both real-world data and simulated scenarios. We report the results obtained from statistical modeling algorithms, as well as from machine learning methods including neural networks, K-nearest neighbors, and random forests.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleTowards the Best Solution for Complex System Reliability: Can Statistics Outperform Machine Learning?es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doidoi.org/10.3390/ machines12120909
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional