Afficher la notice abrégée

dc.contributor.authorDéniz Cerpa, José Daniel 
dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorMartínez Ortigosa, Eva 
dc.contributor.authorBarranco Expósito, Francisco 
dc.date.accessioned2024-12-11T07:25:15Z
dc.date.available2024-12-11T07:25:15Z
dc.date.issued2024-12-04
dc.identifier.citationDeniz Cerpa, D. et. al. Electronics 2024, 13(23), 4786. [https://doi.org/10.3390/electronics13234786]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97862
dc.description.abstractDriven by the increasing care needs of residents in long-term care facilities, Ambient Assisted Living paradigms have become very popular, offering new solutions to alleviate this burden. This work proposes an efficient edge-cloud system for indoor activity monitoring in long-term care institutions. Action recognition from video streams is implemented via Deep Learning networks running at edge nodes. Edge Computing stands out for its power efficiency, reduction in data transmission bandwidth, and inherent protection of residents’ sensitive data. To implement Artificial Intelligence models on these resource-limited edge nodes, complex Deep Learning networks are first distilled. Knowledge distillation allows for more accurate and efficient neural networks, boosting recognition performance of the solution by up to 8% without impacting resource usage. Finally, the central server runs a Quality and Resource Management (QRM) tool that monitors hardware qualities and recognition performance. This QRM tool performs runtime resource load balancing among the local processing devices ensuring real-time operation and optimized energy consumption. Also, the QRM module conducts runtime reconfiguration switching the running neural network to optimize the use of resources at the node and to improve the overall recognition, especially for critical situations such as falls. As part of our contributions, we also release the manually curated Indoor Action Dataset.es_ES
dc.description.sponsorshipNational Grant PID2022-141466OB-I00 funded by MICIU/ AEI/10.13039/501100011033 and by ERDF/EUes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmachine learninges_ES
dc.subjectinternet of thingses_ES
dc.subjectreal-time and embedded systemses_ES
dc.titleOptimized Edge-Cloud System for Activity Monitoring Using Knowledge Distillationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/electronics13234786
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional