Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Marcos, Alberto
dc.contributor.authorRos Die, Eduardo 
dc.date.accessioned2024-12-03T12:30:57Z
dc.date.available2024-12-03T12:30:57Z
dc.date.issued2024-10-28
dc.identifier.citationHernández Marcos, A. & Ros Die, E. Sci Rep 14, 25858 (2024). [https://doi.org/10.1038/s41598-024-72817-x]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97662
dc.description.abstractIn nature, intelligent living beings have developed emotions to modulate their behavior as a fundamental evolutionary advantage. However, researchers seeking to endow machines with this advantage lack a clear theory from cognitive neuroscience describing emotional elicitation from first principles, namely, from raw observations to specific affects. As a result, they often rely on casespecific solutions and arbitrary or hard-coded models that fail to generalize well to other agents and tasks. Here we propose that emotions correspond to distinct temporal patterns perceived in crucial values for living beings in their environment (like recent rewards, expected future rewards or anticipated world states) and introduce a fully self-learning emotional framework for Artificial Intelligence agents convincingly associating them with documented natural emotions. Applied in a case study, an artificial neural network trained on unlabeled agent’s experiences successfully learned and identified eight basic emotional patterns that are situationally coherent and reproduce natural emotional dynamics. Validation through an emotional attribution survey, where human observers rated their pleasure-arousal-dominance dimensions, showed high statistical agreement, distinguishability, and strong alignment with experimental psychology accounts. We believe that the framework’s generality and cross-disciplinary language defined, grounded on first principles from Reinforcement Learning, may lay the foundations for further research and applications, leading us toward emotional machines that think and act more like us.es_ES
dc.description.sponsorshipGrant PID2022-140095NB-I00 funded by MCIN/AEI /10.13039/501100011033/ and FEDER Una manera de hacer Europaes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEmotionses_ES
dc.subjectEmotional modeles_ES
dc.subjectReinforcement learninges_ES
dc.titleA generic self-learning emotional framework for machineses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1038/s41598-024-72817-x
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional