Afficher la notice abrégée

dc.contributor.authorWen Wu, Wen
dc.contributor.authorCantero Chinchilla, Sergio
dc.contributor.authorPrescott, Darren
dc.contributor.authorRemenyte Prescott, Rasa
dc.contributor.authorChiachío Ruano, Manuel 
dc.date.accessioned2024-12-03T12:09:46Z
dc.date.available2024-12-03T12:09:46Z
dc.date.issued2024-06-19
dc.identifier.citationWu, W. et. al. Reliability Engineering and System Safety 250 (2024) 110267. [https://doi.org/10.1016/j.ress.2024.110267]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97656
dc.description.abstractStructural health monitoring systems (SHM) involve implementing damage identification strategies to determine the health state of structures. However, it is important to pay close attention to the system degradation, especially the effect of sensor degradation on the SHM system reliability. This paper aims to formulate a general framework for evaluating SHM reliability that takes sensor failures into account. The framework involves modelling sensor network degradation processes using Petri nets (PNs) and calculating the expected information gain of the sensor network. The PNs allow for identifying the location and number of sensor failures. Kullback–Leibler (KL) divergence with Bayesian inversion is used to calculate the expected information loss due to sensor failure. Two case studies are used to illustrate the methodology: (i) a damage localization scheme using an ellipse-based time-of-flight (ToF) model and (ii) a damage identification scheme using a guided waves damage interaction model. The proposed framework is demonstrated by both numerical and physical experimental case studies. Whereas the case studies are specific to an ultrasonic guided wave monitoring system, the proposed approach is generic. The proposed model is able to predict the health condition state and utility of SHM, which can potentially help in constructing asset management models in various industries.es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation program under the Marie Skłodowska- Curie grant agreement No. 859957es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMonitoring system reliabilityes_ES
dc.subjectStructural health monitoringes_ES
dc.subjectBayesian inverse problemes_ES
dc.titleA general approach to assessing SHM reliability considering sensor failures based on information theoryes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/H2020/MSC/859957es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ress.2024.110267
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional