Afficher la notice abrégée

dc.contributor.authorGarcía Burgos, Ana
dc.contributor.authorParaggio, Paola
dc.contributor.authorRomero Molina, Desiré 
dc.contributor.authorRico Castro, Nuria 
dc.date.accessioned2024-12-02T12:40:04Z
dc.date.available2024-12-02T12:40:04Z
dc.date.issued2024-11-26
dc.identifier.citationGarcía-Burgos, A.; Paraggio, P.; Romero-Molina, D.; Rico-Castro, N. Inference with Non-Homogeneous Lognormal Diffusion Processes Conditioned on Nearest Neighbor. Mathematics 2024, 12, 3703. https:// doi.org/10.3390/math12233703es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97606
dc.description.abstractIn this work, we approach the forecast problem for a general non-homogeneous diffusion process over time with a different perspective from the classical one. We study the main characteristic functions as mean, mode, and α-quantiles conditioned on a future time, not conditioned on the past (as is normally the case), and we observe the specific formula in some interesting particular cases, such as Gompertz, logistic, or Bertalanffy diffusion processes, among others. This study aims to enhance classical inference methods when we need to impute data based on available information, past or future. We develop a simulation and obtain a dataset that is closer to reality, where there is no regularity in the number or timing of observations, to extend the traditional inference method. For such data, we propose using characteristic functions conditioned on the past or the future, depending on the closest point at which we aim to perform the imputation. The proposed inference procedure greatly reduces imputation errors in the simulated dataset.es_ES
dc.description.sponsorshipPID2021-128261NBI00 (PROESTEAM), financed by MICIN/AEI/10.13039/501100011033 and by ERDF, EU and Junta de Andalucía grant number FQM-147es_ES
dc.description.sponsorship“European Union – Next Generation EU” through MUR-PRIN 2022, project 2022XZSAFN “Anomalous Phenomena on Regular and Irregular Domains: Approximating Complexity for the Applied Sciences”,es_ES
dc.description.sponsorship“European Union – Next Generation EU” through MURPRIN 2022 PNRR, project P2022XSF5H "Stochastic Models in Biomathematics and Applicationses_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectdiffusion processeses_ES
dc.subjectGompertz-lognormales_ES
dc.subjectconditioned on futurees_ES
dc.titleInference with Non-Homogeneous Lognormal Diffusion Processes Conditioned on Nearest Neighbores_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/math12233703
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional