Can Magnetic Dipole Transition Moment Be Engineered?
Metadatos
Mostrar el registro completo del ítemAutor
Uceda, Rafael G.; Moreno Cruz, Carlos; Míguez Lago, Sandra; Álvarez de Cienfuegos, Luis; Longhi, Giovanna; Pelta Mochcovsky, David Alejandro; Novoa, Pavel; Mota Ávila, Antonio José; Cuerva Carvajal, Juan Manuel; Miguel Álvarez, DeliaEditorial
Wiley
Materia
Chirality Circular Dichroism Clustering Method
Fecha
2023-12-05Referencia bibliográfica
R. G. Uceda, C. M. Cruz, S. Míguez-Lago, L. Á. de Cienfuegos, G. Longhi, D. A. Pelta, P. Novoa, A. J. Mota, J. M. Cuerva, D. Miguel, Angew. Chem. Int. Ed. 2024, 63, e202316696. https://doi.org/10.1002/anie.202316696
Patrocinador
PID2020-113059GB-C21 funded by MCIN/AEI/10.13039/501100011033; PID2020-112754GB-I00 funded by MCIN/AEI/10.13039/501100011033; PID2022-137403NA-I00 funded by MCIN/AEI/10.13039/501100011033; “ERDF A way of making Europe”; FPU contract (FPU20/03582); Postdoctoral grant (POSTDOC_21_00139), Junta de Andalucía; Centro de Servicio de Informática y Redes de Comunicaciones (CSIRC), Universidad de Granada; Universidad de Granada /CBUAResumen
The development of chiral compounds with enhanced chiroptical properties is an important challenge to improve device applications. To that end, an optimization of the electric and magnetic dipole transition moments of the molecule is necessary. Nevertheless, the relationship between chemical structure and such quantum mechanical properties is not always clear. That is the case of magnetic dipole transition moment (m) for which no general trends for its optimization have been suggested. In this work we propose a general rationalization for improving the magnitude of m in different families of chiral compounds. Performing a clustering analysis of hundreds of transitions, we have been able to identify a single group in which |m| value is maximized along the helix axis. More interestingly, we have found an accurate linear relationship (up to R2=0.994) between the maximum value of this parameter and the area of the inner cavity of the helix, thus resembling classical behavior of solenoids. This research provides a tool for the rationalized synthesis of compounds with improved chiroptical responses.