Mostrar el registro sencillo del ítem

dc.contributor.authorÁlvarez Manuel, Laura
dc.contributor.authorAlegre, Cinthia
dc.contributor.authorSebastián, David
dc.contributor.authorNapal, Pedro F.
dc.contributor.authorMoreno, Cristina
dc.contributor.authorBailón García, Esther 
dc.contributor.authorCarrasco Marín, Francisco 
dc.contributor.authorLázaro, María J.
dc.date.accessioned2024-12-02T10:57:17Z
dc.date.available2024-12-02T10:57:17Z
dc.date.issued2023-12-18
dc.identifier.citationL. Álvarez-Manuel, C. Alegre, D. Sebastián, P. F. Napal, C. Moreno, E. Bailón-García, F. Carrasco-Marín, M. J. Lázaro, ChemElectroChem 2024, 11, e202300549. https://doi.org/10.1002/celc.202300549es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97586
dc.description.abstractFe−N−C catalysts are an interesting option for polymer electrolyte fuel cells due to their low cost and high activity towards the oxygen reduction reaction (ORR). Since Fe−N−C active sites are preferentially formed in the micropores of the carbon matrix, increasing the microporosity is highly appealing. In this work, carbon xerogels (CXG) were activated by physical and chemical methods to favor the formation of micropores, used as carbon matrices for Fe−N−C catalysts, and investigated for the ORR. The catalysts were characterized by solid-state techniques to determine chemical composition and pore structure. Physical activation increased microporosity up to 2-fold leading to catalysts with a larger density of active sites (more than twice iron and nitrogen uptake, pyridinic N and Nx−Fe). This entailed a higher ORR intrinsic activity determined in a 3-electrode cell (80 mV better half-wave potential). At the cathode of a fuel cell, the catalysts based on activated carbon materials showed 26 % lower power density ascribed to a more hydrophilic surface, causing a larger extent of flooding of the electrode that counterbalances the higher intrinsic activity. Interestingly, a more stable behavior was observed for the activated catalysts, with up to 2-fold better relative power density retention after 20-hour operation.es_ES
dc.description.sponsorshipPID2020-115848RBC21 funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipEuropean Institute of Innovation and Technology (EIT) through project EIT RM – n. 18252es_ES
dc.description.sponsorshipGobierno de Aragón (DGA), Grupo de Conversión de Combustibles (T06_23R)es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectactivationes_ES
dc.subjectcarbon xerogelses_ES
dc.subjectFe−N−C catalystses_ES
dc.titleEffect of Carbon Xerogel Activation on Fe−N−C Catalyst Activity in Fuel Cellses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doidoi.org/10.1002/celc.202300549
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional