• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Targeting incentives to adopt wind-assisted technologies in shipping by agent-based simulations

[PDF] WASP_ABM_Extension.pdf (3.184Mb)
Identificadores
URI: https://hdl.handle.net/10481/97531
DOI: https://doi.org/10.1016/j.trd.2024.104511
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Romero Contreras, Elena; Chica Serrano, Manuel; Rivas Hermann, Roberto; Damas Arroyo, Sergio
Fecha
2024
Referencia bibliográfica
Transportation Research Part D
Resumen
Although the maritime industry has introduced technological improvements, shipping activity is still a major contributor to greenhouse gas emissions. Using more intelligent incentive policies, such as subsidies, seems a way to increase green technology adoption. Our proposal is to engineer micro-level incentives to target a reduced set of adopters to optimize subsidies while encouraging adoption by shipowners. We focus on wind-assisted propulsion technology in shipping and test the effectiveness of targeting using agent-based simulations. The agent-based model employs a three-phase process, influenced by awareness of technology, economic factors, and networking. Experiments under different scenarios robustly analyze targeting policies and their impact on adoption rates. Our findings reveal that targeted incentives significantly improve adoption compared to a uniform distribution. The most effective targeting policies are those that select receptors based on their social activity and energy consumption, although the available budget affects the selection of criteria
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias