Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz de la Guardia Bolívar, Elisa 
dc.contributor.authorMartínez Manjón, Juan Emilio
dc.contributor.authorPérez-Filgueiras, David
dc.contributor.authorZwir Nawrocki, Jorge Sergio Igor 
dc.contributor.authorVal Muñoz, María Coral Del 
dc.date.accessioned2024-11-28T12:53:04Z
dc.date.available2024-11-28T12:53:04Z
dc.date.issued2024-11-19
dc.identifier.citationDíaz de la Guardia Bolívar, E. et. al. Int. J. Mol. Sci. 2024, 25, 12419. [https://doi.org/10.3390/ijms252212419]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97525
dc.description.abstractIn oncology, there is a critical need for robust biomarkers that can be easily translated into the clinic. We introduce a novel approach using paired differential gene expression analysis for biological feature selection in machine learning models, enhancing robustness and interpretability while accounting for patient variability. This method compares primary tumor tissue with the same patient’s healthy tissue, improving gene selection by eliminating individual-specific artifacts. A focus on carcinoma was selected due to its prevalence and the availability of the data; we aim to identify biomarkers involved in general carcinoma progression, including less-researched types. Our findings identified 27 pivotal genes that can distinguish between healthy and carcinoma tissue, even in unseen carcinoma types. Additionally, the panel could precisely identify the tissue-oforigin in the eight carcinoma types used in the discovery phase. Notably, in a proof of concept, the model accurately identified the primary tissue origin in metastatic samples despite limited sample availability. Functional annotation reveals these genes’ involvement in cancer hallmarks, detecting subtle variations across carcinoma types. We propose paired differential gene expression analysis as a reference method for the discovering of robust biomarkers.es_ES
dc.description.sponsorshipGrant PID20210125017OB-I00, funded by MCIN/ AEI/10.13039/501100011033 and by “ERDF: A way of making Europe”es_ES
dc.description.sponsorshipDoctoral fellowship, PRE2019-089807, from the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) and the European Social Fund (ESF), “ESF investing in your future”es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectrobust biomarkerses_ES
dc.subjectmachine learninges_ES
dc.subjectcarcinomaes_ES
dc.titleExplainable Machine Learning Models Using Robust Cancer Biomarkers Identification from Paired Differential Gene Expressiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/ijms252212419
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional