Afficher la notice abrégée

dc.contributor.authorGładysiak, Andrzej
dc.contributor.authorSong, Ah-Young
dc.contributor.authorVismara, Rebecca 
dc.contributor.authorWaite, Madison
dc.contributor.authorM. Alghoraibi, Nawal
dc.contributor.authorH. Alahmed, Ammar
dc.contributor.authorYounes, Mourad
dc.contributor.authorHuang, Hongliang
dc.contributor.authorA. Reimer, Jeffrey
dc.contributor.authorC. Stylianou, Kyriakos
dc.date.accessioned2024-11-28T07:31:02Z
dc.date.available2024-11-28T07:31:02Z
dc.date.issued2024-11-11
dc.identifier.citationGładysiak, A. et. al. JACS Au 2024, 4, 4527−4536. [https://doi.org/10.1021/jacsau.4c00923]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97480
dc.description.abstractCapturing carbon dioxide from diluted streams, such as flue gas originating from natural gas combustion, can be achieved using recyclable, humidity-resistant porous materials. Three such materials were synthesized by chemically modifying the pores of metal−organic frameworks (MOFs) with Lewis basic functional groups. These materials included aluminum 1,2,4,5- tetrakis(4-carboxylatophenyl) benzene (Al-TCPB) and two novel MOFs: Al-TCPB(OH), and Al-TCPB(NH2), both isostructural to Al-TCPB, and chemically and thermally stable. Single-component adsorption isotherms revealed significantly increased CO2 uptakes upon pore functionalization. Breakthrough experiments using a 4/96 CO2/N2 gas mixture humidified up to 75% RH at 25 °C showed that Al-TCPB(OH) displayed the highest CO2 dynamic breakthrough capacity (0.52 mmol/g) followed by that of Al- TCPB(NH2) (0.47 mmol/g) and Al-TCPB (0.26 mmol/g). All three materials demonstrated excellent recyclability over eight humid breakthrough-regeneration cycles. Solid-state nuclear magnetic resonance spectra revealed that upon CO2/H2O loading, H2O molecules do not interfere with CO2 physisorption and are localized near the Al-O(H) chain and the −NH2 functional group, whereas CO2 molecules are spatially confined in Al-TCPB(OH) and relatively mobile in Al-TCPB(NH2). Density functional theory calculations confirmed the impact of the adsorbaphore site between of two parallel ligand-forming benzene rings for CO2 capture. Our study elucidates how pore functionalization influences the fundamental adsorption properties of MOFs, underscoring their practical potential as porous sorbent materials.es_ES
dc.description.sponsorshipCollege of Science for the Industrial Partnership Awardes_ES
dc.description.sponsorshipSaudi Aramcoes_ES
dc.language.isoenges_ES
dc.publisherACS Publicationses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectpore functionalizationes_ES
dc.subjectCO2 capturees_ES
dc.subjectH2O isothermses_ES
dc.titleEnhanced Carbon Dioxide Capture from Diluted Streams with Functionalized Metal−Organic Frameworkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1021/jacsau.4c00923
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional