Afficher la notice abrégée

dc.contributor.authorGarcía Uceda Fernández, Rafael
dc.contributor.authorGijón Gijón, Alfonso
dc.contributor.authorMíguez Lago, Sandra 
dc.contributor.authorMoreno Cruz, Carlos 
dc.contributor.authorBlanco Suárez, Víctor 
dc.contributor.authorFernández Álvarez, Fátima 
dc.contributor.authorÁlvarez de Cienfuegos, Luis
dc.contributor.authorMolina Solana, Miguel José 
dc.contributor.authorGómez-Romero, Juan 
dc.contributor.authorMiguel Álvarez, Delia 
dc.contributor.authorMota Ávila, Antonio José 
dc.contributor.authorCuerva Carvajal, Juan Manuel 
dc.date.accessioned2024-11-27T12:57:56Z
dc.date.available2024-11-27T12:57:56Z
dc.date.issued2024-09-27
dc.identifier.citationGarcía Uceda, R. et. al. Angew. Chem. Int. Ed. 2024, 63, e202409998. [https://doi.org/10.1002/anie.202409998]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97474
dc.description.abstractAbstract: The relationship between chemical structure and chiroptical properties is not always clearly understood. Nowadays, efforts to develop new systems with enhanced optical properties follow the trial-error method. A large number of data would allow us to obtain more robust conclusions and guide research toward molecules with practical applications. In this sense, in this work we predict the chiroptical properties of millions of halogenated [6]helicenes in terms of the rotatory strength (R). We have used DFT calculations to randomly create derivatives including from 1 to 16 halogen atoms, that were then used as a data set to train different deep neural network models. These models allow us to i) predict the Rmax for any halogenated [6]helicene with a very low computational cost, and ii) to understand the physical reasons that favour some substitutions over others. Finally, we synthesized derivatives with higher predicted Rmax obtaining excellent correlation among the values obtained experimentally and the predicted ones.es_ES
dc.description.sponsorshipGrants PID2023-146801NB- C31 and PID2020-113059GB-C21 funded by MICIU/AEI/10.13039/ 501100011033; PID2021-125537NA.I00 funded by MICIU/ AEI/10.13039/501100011033 and by ERDF/EU; PID2022- 137403NA-I00 funded by MICIU/AEI/10.13039/ 501100011033 and by ERDF/EU; PID2023-146433NB-I00 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EUes_ES
dc.description.sponsorshipERDF/Junta de Andalucía (D3S project P21.00247)es_ES
dc.description.sponsorshipFPU contract (FPU20/03582)es_ES
dc.description.sponsorshipJunta de Andalucía is also acknowledged for postdoctoral grants by CMC (POSTDOC 21 00139) and SML. (DOC 01165)es_ES
dc.description.sponsorshipCentro de Servicio de Informática y Redes de Comunicaciones (CSIRC)es_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherWiley Online Libraryes_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectdeep learninges_ES
dc.subjectchiroptical propertieses_ES
dc.subjectDFT calculationses_ES
dc.titleCan Deep Learning Search for Exceptional Chiroptical Properties? The Halogenated [6]Helicene Casees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/anie.202409998
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial 4.0 Internacional