dc.contributor.author | García Uceda Fernández, Rafael | |
dc.contributor.author | Gijón Gijón, Alfonso | |
dc.contributor.author | Míguez Lago, Sandra | |
dc.contributor.author | Moreno Cruz, Carlos | |
dc.contributor.author | Blanco Suárez, Víctor | |
dc.contributor.author | Fernández Álvarez, Fátima | |
dc.contributor.author | Álvarez de Cienfuegos, Luis | |
dc.contributor.author | Molina Solana, Miguel José | |
dc.contributor.author | Gómez-Romero, Juan | |
dc.contributor.author | Miguel Álvarez, Delia | |
dc.contributor.author | Mota Ávila, Antonio José | |
dc.contributor.author | Cuerva Carvajal, Juan Manuel | |
dc.date.accessioned | 2024-11-27T12:57:56Z | |
dc.date.available | 2024-11-27T12:57:56Z | |
dc.date.issued | 2024-09-27 | |
dc.identifier.citation | García Uceda, R. et. al. Angew. Chem. Int. Ed. 2024, 63, e202409998. [https://doi.org/10.1002/anie.202409998] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/97474 | |
dc.description.abstract | Abstract: The relationship between chemical structure
and chiroptical properties is not always clearly understood.
Nowadays, efforts to develop new systems with
enhanced optical properties follow the trial-error method.
A large number of data would allow us to obtain
more robust conclusions and guide research toward
molecules with practical applications. In this sense, in
this work we predict the chiroptical properties of
millions of halogenated [6]helicenes in terms of the
rotatory strength (R). We have used DFT calculations to
randomly create derivatives including from 1 to 16
halogen atoms, that were then used as a data set to train
different deep neural network models. These models
allow us to i) predict the Rmax for any halogenated
[6]helicene with a very low computational cost, and ii)
to understand the physical reasons that favour some
substitutions over others. Finally, we synthesized derivatives
with higher predicted Rmax obtaining excellent
correlation among the values obtained experimentally
and the predicted ones. | es_ES |
dc.description.sponsorship | Grants PID2023-146801NB- C31 and PID2020-113059GB-C21 funded by MICIU/AEI/10.13039/ 501100011033; PID2021-125537NA.I00 funded by MICIU/ AEI/10.13039/501100011033 and by ERDF/EU; PID2022- 137403NA-I00 funded by MICIU/AEI/10.13039/ 501100011033 and by ERDF/EU; PID2023-146433NB-I00
funded by MICIU/AEI/10.13039/501100011033 and by
ERDF/EU | es_ES |
dc.description.sponsorship | ERDF/Junta de Andalucía (D3S project
P21.00247) | es_ES |
dc.description.sponsorship | FPU contract
(FPU20/03582) | es_ES |
dc.description.sponsorship | Junta de Andalucía is also acknowledged
for postdoctoral grants by CMC (POSTDOC 21 00139) and
SML. (DOC 01165) | es_ES |
dc.description.sponsorship | Centro de Servicio
de Informática y Redes de Comunicaciones (CSIRC) | es_ES |
dc.description.sponsorship | Universidad de
Granada / CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Wiley Online Library | es_ES |
dc.rights | Atribución-NoComercial 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | deep learning | es_ES |
dc.subject | chiroptical properties | es_ES |
dc.subject | DFT calculations | es_ES |
dc.title | Can Deep Learning Search for Exceptional Chiroptical Properties? The Halogenated [6]Helicene Case | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1002/anie.202409998 | |
dc.type.hasVersion | VoR | es_ES |