Afficher la notice abrégée

dc.contributor.authorRutten, Luco
dc.contributor.authorJoosten, Ben
dc.contributor.authorSchaart, Judith
dc.contributor.authorde Beer, Marit
dc.contributor.authorRoverts, Rona
dc.contributor.authorGräber, Steffen
dc.contributor.authorJahnen-Dechent, Willi
dc.contributor.authorAkiva, Anat
dc.contributor.authorMacías Sánchez, Elena 
dc.contributor.authorSommerdijk, Nico
dc.date.accessioned2024-11-27T12:40:14Z
dc.date.available2024-11-27T12:40:14Z
dc.date.issued2024-11-09
dc.identifier.citationRutten, L. et. al. Adv. Funct. Mater. 2024, 2416938. [https://doi.org/10.1002/adfm.202416938]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97471
dc.description.abstractLiquid phase electron microscopy (LP-EM) has emerged as a powerful technique for in situ observation of material formation in liquid. Especially the use of graphene as window material provides new opportunities to image biological processes because of graphene’s molecular thickness and electron scavenger capabilities. However, in most cases the process of interest is initiated when the graphene liquid cells (GLCs) are sealed, meaning that the process cannot be imaged at early timepoints. Here, a novel cryogenic/liquid phase correlative light/electron microscopy workflow that addresses the delay time between graphene encapsulation and the start of the imaging, while combining the advantages of fluorescence and electron microscopy is reported. This workflow allows imaging to be initiated at a predetermined space and time by vitrifying and thawing at a selected time point. The workflow is demonstrated first by observing multiple day crystallization processes and subsequently highlight its potential by observing a biological process: the complexation of calciprotein particles. The ability to correlate the dynamic complexation observed in a GLC with cryogenic TEM and dynamic light scattering, confirms the validity of observations and underlines the exciting possibilities for LP-EM in biology.es_ES
dc.description.sponsorshipEuropean Research Council (ERC) Advanced Investigator grant (H2020-ERC-2017- ADV-788982-COLMIN)es_ES
dc.description.sponsorshipMarie Curie Individual Fellowship, MSCA-IF-2020 DYNAMIN (101031624)es_ES
dc.description.sponsorshipResearch Program Juan de la Cierva Incorporación (IJC2020-043639-I) funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/ PRTRes_ES
dc.description.sponsorshipProject PID2022-141993NA-I00 funded by MICIU/ AEI/10.13039/501100011033 and ERDF/UEes_ES
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 219 – Project-ID 322900939, and 403041552es_ES
dc.language.isoenges_ES
dc.publisherWiley Online Libraryes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA Cryo-to-Liquid Phase Correlative Light Electron Microscopy Workflow for the Visualization of Biological Processes in Graphene Liquid Cellses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/H2020/MSC/1010031624es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/adfm.202416938
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional