Mostrar el registro sencillo del ítem
An extension of s-noetherian rings and modules
dc.contributor.author | Jara Martínez, Pascual | |
dc.date.accessioned | 2024-11-25T07:56:07Z | |
dc.date.available | 2024-11-25T07:56:07Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | International Electronic Journal of Algebra. Volume 34 (2023) 1-20 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/97297 | |
dc.description.abstract | For any commutative ring $A$ we introduce a generalization of $S$-noetherian rings using a hereditary torsion theory $\sigma$ instead of a multiplicatively closed subset $S\subseteq{A}$. It is proved that totally noetherian w.r.t. $\sigma$ is a local property, and if $A$ is a totally noetherian ring w.r.t $\sigma$, then $\sigma$ is of fi nite type. | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | |
dc.title | An extension of s-noetherian rings and modules | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.24330/ieja.1300716 | |
dc.type.hasVersion | AM | es_ES |