• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A multi-objective co-evolutionary algorithm for energy and cost-oriented mixed-model assembly line balancing with multi-skilled workers

[PDF] 1-s2.0-S0957417423017232-main.pdf (1.702Mb)
Identificadores
URI: https://hdl.handle.net/10481/97253
DOI: https://doi.org/10.1016/j.eswa.2023.121221
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Zhang, Z; Chica Serrano, Manuel; Tang, Q; Li, Z; Zhang, L
Date
2024
Referencia bibliográfica
Expert Systems with Applications 236 121221, 2024
Abstract
Energy-saving, one of the most significant strategies for green manufacturing, has become the focus of more and more scholars and enterprise managers. Hence, this work addresses the minimization of energy and cost requirements on mixed-model multi-manned assembly line balancing with multi-skilled workers. A new mixed-integer linear programming model is proposed to define the problem. Additionally, a novel multi-objective co-evolutionary algorithm is designed to achieve the trade-off between energy and cost requirements. This algorithm includes a two-layer solution representation to achieve full coverage of the solution space and a new decoding mechanism with idle time reduction. A collaborative initialization as the first stage of the algorithm is extended to get high-quality and great-diversity initial solutions. A self-learning evolution for each sub-population with four problem-specific evolutionary operators is developed to explore task or worker assignment sequences, and a dual-cooperation strategy is proposed to enhance the interaction between sub-populations. The final experiments, based on 269 instances, demonstrate that the improvement components are effective and the proposed algorithm is superior to seven latest multi-objective evolutionary algorithms from numerical, statistical and differential analyses.
Collections
  • DCCIA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback