• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Payoff-driven Interaction in Networked Snowdrift Games

[PDF] 2406.16762v1.pdf (3.915Mb)
Identificadores
URI: https://hdl.handle.net/10481/97252
DOI: https://doi.org/10.1016/j.chaos.2024.115187
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Xiong, X; Yao, Y; Feng, M; Chica Serrano, Manuel
Date
2024
Referencia bibliográfica
Chaos, Sol. and Fractals 185, 115187
Abstract
In social dilemmas, most interactions are transient and susceptible to restructuring, leading to continuous changes in social networks over time. Typically, agents assess the rewards of their current interactions and adjust their connections to optimize outcomes. In this paper, we introduce an adaptive network model in the snowdrift game to examine dynamic levels of cooperation and network topology, involving the potential for both the termination of existing connections and the establishment of new ones. In particular, we define the agent’s asymmetric disassociation tendency toward their neighbors, which fundamentally determines the probability of edge dismantlement. The mechanism allows agents to selectively sever and rewire their connections to alternative individuals to refine partnerships. Our findings reveal that adaptive networks are particularly effective in promoting a robust evolution toward states of either pure cooperation or complete defection, especially under conditions of extreme cost-benefit ratios, as compared to static network models. Moreover, the dynamic restructuring of connections and the distribution of network degrees among agents are closely linked to the levels of cooperation in stationary states. Specifically, cooperators tend to seek broader neighborhoods when confronted with the invasion of multiple defectors.
Collections
  • DCCIA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback