• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Networked N-player Trust Game and its Evolutionary Dynamics

[PDF] A_Networked_N_-Player_Trust_Game_and_Its_Evolutionary_Dynamics.pdf (2.496Mo)
Identificadores
URI: https://hdl.handle.net/10481/97248
DOI: https://doi.org/10.1109/TEVC.2017.2769081
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Chica Serrano, Manuel; Chiong, Raymond; Kirley, Michael; Ishibuchi, Hisao
Date
2018
Referencia bibliográfica
IEEE Transactions on Evolutionary Computation 22 (6), 866-878, 2018
Résumé
Trust and trustworthiness are of great importance in social and human systems, especially when considering managerial and economic decision-making. In this paper, we investigate the emergent dynamics of an evolutionary game-theoretic model-the N-player evolutionary trust game-consisting of three types of players: 1) an investor; 2) a trustee who is trustworthy; and 3) a trustee who is untrustworthy. Here, we limit the interactions between players to local neighborhoods defined by a specific spatial topology or social network. Players are able to adjust their game-playing strategies using an evolutionary update rule based on the payoffs obtained by their neighbors. Through comprehensive simulation experiments, we find that trust can be promoted when players interact on a social network despite a substantial number of untrustworthy individuals in the initial population. These results differ from findings reported for an unstructured population of the same game, where the existence of a single untrustworthy individual would eliminate trust completely. We compare the dynamics of the model with different social network densities and structures (e.g., from regular lattices to scale-free and random networks). We observe that the levels of trust vary under different network structures, and the level is correlated with how “difficult” the game is. When game conditions are easy (i.e., low temptation to defect and/or almost no initial untrustworthy trustees), homogeneous networks with higher densities can promote higher levels of trust. However, when the game becomes harder, heterogeneous social networks with lower densities are able to promote higher levels of trust and global net wealth.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire