Afficher la notice abrégée

dc.contributor.authorD’Angelo, Egidio
dc.contributor.authorAntonietti, Alberto
dc.contributor.authorCasali, Stefano
dc.contributor.authorCasellato, Claudia
dc.contributor.authorGarrido, Jesús A.
dc.contributor.authorLuque Sola, Niceto Rafael 
dc.contributor.authorMapelli, Lisa
dc.contributor.authorMasoli, Stefano
dc.contributor.authorPedrocchi, Alessandra
dc.contributor.authorPrestori, Francesca
dc.contributor.authorRizza, Martina Francesca
dc.contributor.authorRos Vidal, Eduardo 
dc.date.accessioned2024-11-21T13:01:38Z
dc.date.available2024-11-21T13:01:38Z
dc.date.issued2016-07-08
dc.identifier.citationD´Angelo, E. et. al. Front. Cell. Neurosci. 10:176. [https://doi.org/10.3389/fncel.2016.00176]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97228
dc.description.abstractThe cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate “realistic” models using a bottom-up strategy accounted for both detailed connectivity and neuronal nonlinear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closedloop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems.es_ES
dc.description.sponsorshipREALNET (FP7-ICT270434) and CEREBNET (FP7-ITN238686) consortiumes_ES
dc.description.sponsorshipman Brain Project (HBP-604102) to ED’A and ER and by HBP-RegioneLombardia to APes_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcerebellumes_ES
dc.subjectcellular neurophysiologyes_ES
dc.subjectmicrocircuites_ES
dc.titleModeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issuees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3389/fncel.2016.00176
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional