Mostrar el registro sencillo del ítem
Preprocessing of 18F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution
| dc.contributor.author | Segovia Román, Fermín | |
| dc.contributor.author | Gorriz Sáez, Juan Manuel | |
| dc.contributor.author | Ramírez Pérez De Inestrosa, Javier | |
| dc.contributor.author | Martínez Murcia, Francisco Jesús | |
| dc.contributor.author | Salas González, Diego | |
| dc.date.accessioned | 2024-11-21T12:52:32Z | |
| dc.date.available | 2024-11-21T12:52:32Z | |
| dc.date.issued | 2017-10-09 | |
| dc.identifier.citation | Segovia Román, F. et. al. Front. Aging Neurosci. 9:326. [https://doi.org/10.3389/fnagi.2017.00326] | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/97227 | |
| dc.description.abstract | 18F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson’s disease (PD) that allows us to examine postsynaptic dopamine D2/3 receptors. Like other neuroimaging modalities used for PD diagnosis, most of the total intensity of 18F-DMFPPET images is concentrated in the striatum. However, other regions can also be useful for diagnostic purposes. An appropriate delimitation of the regions of interest contained in 18F-DMFP-PET data is crucial to improve the automatic diagnosis of PD. In this manuscript we propose a novel methodology to preprocess 18F-DMFP-PET data that improves the accuracy of computer aided diagnosis systems for PD. First, the data were segmented using an algorithm based on Hidden Markov Random Field. As a result, each neuroimage was divided into 4 maps according to the intensity and the neighborhood of the voxels. The maps were then individually normalized so that the shape of their histograms could be modeled by a Gaussian distribution with equal parameters for all the neuroimages. This approach was evaluated using a dataset with neuroimaging data from 87 parkinsonian patients. After these preprocessing steps, a Support Vector Machine classifier was used to separate idiopathic and non-idiopathic PD. Data preprocessed by the proposed method provided higher accuracy results than the ones preprocessed with previous approaches. | es_ES |
| dc.description.sponsorship | MINECO under the TEC2012- 34306 and TEC2015-64718-R projects | es_ES |
| dc.description.sponsorship | Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía under the Excellence Projects P09-TIC-4530 | es_ES |
| dc.description.sponsorship | P11-TIC-7103 | es_ES |
| dc.description.sponsorship | Talent Hub project approved by the Andalucía Talent Hub Program | es_ES |
| dc.description.sponsorship | European Union’s Seventh Framework Program, Marie Sklodowska-Curie actions (COFUND — Grant Agreement no. 291780 | es_ES |
| dc.description.sponsorship | Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Frontiers Media | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | PET image segmentation | es_ES |
| dc.subject | 18F-DMFP-PET data | es_ES |
| dc.subject | intensity normalization | es_ES |
| dc.title | Preprocessing of 18F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution | es_ES |
| dc.type | journal article | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/EC/MSC/2911780 | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.3389/fnagi.2017.00326 | |
| dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.
