Afficher la notice abrégée

dc.contributor.authorSegovia Román, Fermín 
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorSalas González, Diego 
dc.date.accessioned2024-11-21T12:52:32Z
dc.date.available2024-11-21T12:52:32Z
dc.date.issued2017-10-09
dc.identifier.citationSegovia Román, F. et. al. Front. Aging Neurosci. 9:326. [https://doi.org/10.3389/fnagi.2017.00326]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97227
dc.description.abstract18F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson’s disease (PD) that allows us to examine postsynaptic dopamine D2/3 receptors. Like other neuroimaging modalities used for PD diagnosis, most of the total intensity of 18F-DMFPPET images is concentrated in the striatum. However, other regions can also be useful for diagnostic purposes. An appropriate delimitation of the regions of interest contained in 18F-DMFP-PET data is crucial to improve the automatic diagnosis of PD. In this manuscript we propose a novel methodology to preprocess 18F-DMFP-PET data that improves the accuracy of computer aided diagnosis systems for PD. First, the data were segmented using an algorithm based on Hidden Markov Random Field. As a result, each neuroimage was divided into 4 maps according to the intensity and the neighborhood of the voxels. The maps were then individually normalized so that the shape of their histograms could be modeled by a Gaussian distribution with equal parameters for all the neuroimages. This approach was evaluated using a dataset with neuroimaging data from 87 parkinsonian patients. After these preprocessing steps, a Support Vector Machine classifier was used to separate idiopathic and non-idiopathic PD. Data preprocessed by the proposed method provided higher accuracy results than the ones preprocessed with previous approaches.es_ES
dc.description.sponsorshipMINECO under the TEC2012- 34306 and TEC2015-64718-R projectses_ES
dc.description.sponsorshipMinistry of Economy, Innovation, Science and Employment of the Junta de Andalucía under the Excellence Projects P09-TIC-4530es_ES
dc.description.sponsorshipP11-TIC-7103es_ES
dc.description.sponsorshipTalent Hub project approved by the Andalucía Talent Hub Programes_ES
dc.description.sponsorshipEuropean Union’s Seventh Framework Program, Marie Sklodowska-Curie actions (COFUND — Grant Agreement no. 291780es_ES
dc.description.sponsorshipMinistry of Economy, Innovation, Science and Employment of the Junta de Andalucíaes_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPET image segmentationes_ES
dc.subject18F-DMFP-PET dataes_ES
dc.subjectintensity normalizationes_ES
dc.titlePreprocessing of 18F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distributiones_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/MSC/2911780es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3389/fnagi.2017.00326
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional