• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-objective constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search

[PDF] 1272_chica-et-al-is10-180-3465-3487-web.pdf (1.330Mb)
Identificadores
URI: https://hdl.handle.net/10481/97190
DOI: 10.1016/j.ins.2010.05.033
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Chica Serrano, Manuel; Cordón García, Óscar; Damas Arroyo, Sergio; Bautista, Joaquín
Editorial
Elsevier
Fecha
2010-09
Referencia bibliográfica
Chica Serrano, Manuel et al. Multi-objective constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search. Information Sciences Volume 180, Issue 18, 15 September 2010, Pages 3465-3487. https://doi.org/10.1016/j.ins.2010.05.033
Patrocinador
UPC Nissan Chair; Spanish Ministerio de Educacin y Ciencia (DPI2007-63026); Spanish Ministerio de Ciencia e Innovacin TIN2009-07727; EDRF
Resumen
In this work we present two new multiobjective proposals based on ant colony optimisation and random greedy search algorithms to solve a more realistic extension of a classical industrial problem: time and space assembly line balancing. Some variants of these algorithms have been compared in order to find out the impact of different design configurations and the use of heuristic information. Good performance is shown after applying every algorithm to 10 well-known problem instances in comparison to NSGA-II. In addition, those algorithms which have provided the best results have been employed to tackle a real-world problem at the Nissan plant, located in Spain.
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias