Mostrar el registro sencillo del ítem

dc.contributor.authorCruz Barroso, Ruymán
dc.contributor.authorFernández Rodríguez, Lidia 
dc.date.accessioned2024-11-20T10:38:50Z
dc.date.available2024-11-20T10:38:50Z
dc.date.issued2024-10-26
dc.identifier.citationCruz-Barroso, R. and Fernández, L. (2024), Orthogonal Laurent Polynomials of Two Real Variables. Stud Appl Math. e12783. https://doi.org/10.1111/sapm.12783es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97136
dc.description.abstractIn this paper we consider an appropriate ordering of the Laurent monomials xiyj , i,j∈Z that allows us to study sequences of orthogonal Laurent polynomials of the real variables x and y with respect to a positive Borel measure μdefined on R2 such that {x=0}∪{y=0}∉supp(μ) . This ordering is suitable for considering the {\em multiplication plus inverse multiplication operator} on each varibale (x+1x and y+1y) , and as a result we obtain five-term recurrence relations, Christoffel-Darboux and confluent formulas for the reproducing kernel and a related Favard's theorem. A connection with the one variable case is also presented, along with some applications for future research.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 (Grant CEX2020-001105-M).es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectbalanced orderinges_ES
dc.subjectChristoffel–Darboux and confluent formulaes_ES
dc.subjectFavard’s theoremes_ES
dc.titleOrthogonal Laurent Polynomials of Two Real Variableses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1111/sapm.12783
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional