Afficher la notice abrégée

dc.contributor.authorMartín Doñas, Juan Manuel
dc.contributor.authorRoselló Casado, Eros
dc.contributor.authorGómez García, Ángel Manuel 
dc.contributor.authorÁlvarez, Aitor
dc.contributor.authorLópez Espejo, Iván
dc.contributor.authorPeinado Herreros, Antonio Miguel 
dc.date.accessioned2024-11-18T11:35:50Z
dc.date.available2024-11-18T11:35:50Z
dc.date.issued2024-08
dc.identifier.urihttps://hdl.handle.net/10481/97009
dc.description.abstractThis paper presents the work carried out by the ASASVI- comtech team, made up of researchers from Vicomtech and University of Granada, for the ASVspoof5 Challenge. The team has participated in both Track 1 (speech deepfake detection) and Track 2 (spoofing-aware speaker verification). This work started with an analysis of the challenge available data, which was regarded as an essential step to avoid later potential biases of the trained models, and whose main conclusions are presented here. With respect to the proposed approaches, a closed- condition system employing a deep complex convolutional recurrent architecture was developed for Track 1, although, un- fortunately, no noteworthy results were achieved. On the other hand, different possibilities of open-condition systems, based on leveraging self-supervised models, augmented training data from previous challenges, and novel vocoders, were explored for both tracks, finally achieving very competitive results with an ensemble system.es_ES
dc.description.sponsorshipProject PID2022-138711OB-I00 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EUes_ES
dc.description.sponsorshipFPI grant PRE2022-000363es_ES
dc.description.sponsorshipEuropean Union’s Horizon Europe re- search and innovation programme in the context of project EITHOS under Grant Agreement No. 101073928es_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_EN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectASVspoof5 Challengees_ES
dc.subjectanti-spoofinges_ES
dc.subjectDeepfakeses_ES
dc.subjectDeep learninges_ES
dc.titleASASVIcomtech: The Vicomtech-UGR Speech Deepfake Detection and SASV Systems for the ASVspoof5 Challengees_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.21437/ASVspoof.2024-21
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License