| dc.contributor.author | Tristán, Ana Isabel | |
| dc.contributor.author | Jiménez Luna, Cristina | |
| dc.contributor.author | Abreu, Ana Cristina | |
| dc.contributor.author | Arrabal-Campos, Francisco Manuel | |
| dc.contributor.author | Salmerón, Ana del Mar | |
| dc.contributor.author | Rodríguez, Firma Isabel | |
| dc.contributor.author | Rodriguez-Maresca, Manuel Angel | |
| dc.contributor.author | Bernardino García, Antonio | |
| dc.contributor.author | Melguizo Alonso, Consolación | |
| dc.contributor.author | Prados Salazar, José Carlos | |
| dc.contributor.author | Fernández, Ignacio | |
| dc.date.accessioned | 2024-11-18T11:21:21Z | |
| dc.date.available | 2024-11-18T11:21:21Z | |
| dc.date.issued | 2024-10-10 | |
| dc.identifier.citation | Tristá, A.I. et. al. Sci Rep 14, 23713 (2024). [https://doi.org/10.1038/s41598-024-74641-9] | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/97006 | |
| dc.description.abstract | The COVID-19 pandemic remains a significant global health threat, with uncertainties persisting
regarding the factors determining whether individuals experience mild symptoms, severe conditions,
or succumb to the disease. This study presents an NMR metabolomics-based approach, analysing
80 serum and urine samples from COVID-19 patients (34 intensive care patients and 46 hospitalized
patients) and 32 from healthy controls. Our research identifies discriminant metabolites and clinical
variables relevant to COVID-19 diagnosis and severity. These discriminant metabolites play a role in
specific pathways, mainly “Phenylalanine, tyrosine and tryptophan biosynthesis”, “Phenylalanine
metabolism”, “Glycerolipid metabolism” and “Arginine and proline metabolism”. We propose a
three-metabolite diagnostic panel—comprising isoleucine, TMAO, and glucose—that effectively
discriminates COVID-19 patients from healthy individuals, achieving high efficiency. Furthermore,
we found an optimal biomarker panel capable of efficiently classify disease severity considering both
clinical characteristics (obesity/overweight, dyslipidemia, and lymphocyte count) together with
metabolites content (ethanol, TMAO, tyrosine and betaine). | es_ES |
| dc.description.sponsorship | Junta de Andalucía (CV20-78799) | es_ES |
| dc.description.sponsorship | State Research Agency of the Spanish Ministry of Science and Innovation (PID2021-126445OB-I00) | es_ES |
| dc.description.sponsorship | Gobierno de España MCIN/AEI/https://doi.org/10.13039/501100011033 | es_ES |
| dc.description.sponsorship | Unión Europea “Next Generation EU”/PRTR (PDC2021-121248-I00, PLEC2021-007774 and CPP2022-009967) | es_ES |
| dc.description.sponsorship | Junta de Andalucía predoctoral grant (PREDOC_01024) | es_ES |
| dc.description.sponsorship | María Zambrano program funded by the Ministry of Universities with EU Next Generation funds | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | COVID-19 | es_ES |
| dc.subject | Metabolomics | es_ES |
| dc.subject | NMR | es_ES |
| dc.title | Metabolomic profiling of COVID-19 using serum and urine samples in intensive care and medical ward cohorts | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1038/s41598-024-74641-9 | |
| dc.type.hasVersion | VoR | es_ES |