Afficher la notice abrégée

dc.contributor.authorTristán, Ana Isabel
dc.contributor.authorJiménez Luna, Cristina 
dc.contributor.authorAbreu, Ana Cristina
dc.contributor.authorArrabal-Campos, Francisco Manuel
dc.contributor.authorSalmerón, Ana del Mar
dc.contributor.authorRodríguez, Firma Isabel
dc.contributor.authorRodriguez-Maresca, Manuel Angel
dc.contributor.authorBernardino García, Antonio
dc.contributor.authorMelguizo Alonso, Consolación 
dc.contributor.authorPrados Salazar, José Carlos 
dc.contributor.authorFernández, Ignacio
dc.date.accessioned2024-11-18T11:21:21Z
dc.date.available2024-11-18T11:21:21Z
dc.date.issued2024-10-10
dc.identifier.citationTristá, A.I. et. al. Sci Rep 14, 23713 (2024). [https://doi.org/10.1038/s41598-024-74641-9]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/97006
dc.description.abstractThe COVID-19 pandemic remains a significant global health threat, with uncertainties persisting regarding the factors determining whether individuals experience mild symptoms, severe conditions, or succumb to the disease. This study presents an NMR metabolomics-based approach, analysing 80 serum and urine samples from COVID-19 patients (34 intensive care patients and 46 hospitalized patients) and 32 from healthy controls. Our research identifies discriminant metabolites and clinical variables relevant to COVID-19 diagnosis and severity. These discriminant metabolites play a role in specific pathways, mainly “Phenylalanine, tyrosine and tryptophan biosynthesis”, “Phenylalanine metabolism”, “Glycerolipid metabolism” and “Arginine and proline metabolism”. We propose a three-metabolite diagnostic panel—comprising isoleucine, TMAO, and glucose—that effectively discriminates COVID-19 patients from healthy individuals, achieving high efficiency. Furthermore, we found an optimal biomarker panel capable of efficiently classify disease severity considering both clinical characteristics (obesity/overweight, dyslipidemia, and lymphocyte count) together with metabolites content (ethanol, TMAO, tyrosine and betaine).es_ES
dc.description.sponsorshipJunta de Andalucía (CV20-78799)es_ES
dc.description.sponsorshipState Research Agency of the Spanish Ministry of Science and Innovation (PID2021-126445OB-I00)es_ES
dc.description.sponsorshipGobierno de España MCIN/AEI/https://doi.org/10.13039/501100011033es_ES
dc.description.sponsorshipUnión Europea “Next Generation EU”/PRTR (PDC2021-121248-I00, PLEC2021-007774 and CPP2022-009967)es_ES
dc.description.sponsorshipJunta de Andalucía predoctoral grant (PREDOC_01024)es_ES
dc.description.sponsorshipMaría Zambrano program funded by the Ministry of Universities with EU Next Generation fundses_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCOVID-19es_ES
dc.subjectMetabolomicses_ES
dc.subjectNMRes_ES
dc.titleMetabolomic profiling of COVID-19 using serum and urine samples in intensive care and medical ward cohortses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1038/s41598-024-74641-9
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional