Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Pozo, Francisco Ramón
dc.contributor.authorIanev, Daiana
dc.contributor.authorMartínez Rodríguez, Tomás
dc.contributor.authorArias Mediano, José Luis 
dc.contributor.authorLinares Ordóñez, Fátima 
dc.contributor.authorGutiérrez Ariza, Carlos
dc.contributor.authorValentino, Caterina
dc.contributor.authorArrebola Vargas, Francisco Jesús 
dc.contributor.authorHernández Benavides, Pablo José 
dc.contributor.authorParedes Martínez, José Manuel 
dc.contributor.authorMedina Pérez, María Del Mar 
dc.contributor.authorRossi, Silvia
dc.contributor.authorSandri, Giuseppina
dc.contributor.authorAguzzi, Carola 
dc.date.accessioned2024-11-18T08:32:05Z
dc.date.available2024-11-18T08:32:05Z
dc.date.issued2024-09-27
dc.identifier.citationRodríguez Pozo, F.R. et. al. Pharmaceutics 2024, 16, 1258. [https://doi.org/10.3390/pharmaceutics16101258]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96970
dc.description.abstractMost of the therapeutic systems developed for managing chronic skin wounds lack adequate mechanical and hydration properties, primarily because they rely on a single component. This study addresses this issue by combining organic and inorganic materials to obtain hybrid films with enhanced mechanical behavior, adhesion, and fluid absorption properties. To that aim, chitosan/ hydrolyzed collagen blends were mixed with halloysite/antimicrobial nanohybrids at 10% and 20% (w/w) using glycerin or glycerin/polyethylene glycol-1500 as plasticizers. The films were characterized through the use of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and electron microscopy. The mechanical properties were evaluated macroscopically using tensile tests, and at a nanoscale through atomic force microscopy (AFM) and nanoindentation. Thermodynamic studies were conducted to assess their hydrophilic or hydrophobic character. Additionally, in vitro cytocompatibility tests were performed on human keratinocytes. Results from FTIR, TGA, AFM and electron microscopy confirmed the hybrid nature of the films. Both tensile tests and nanomechanical measurements postulated that the nanohybrids improved the films’ toughness and adhesion and optimized the nanoindentation properties. All nanohybrid-loaded films were hydrophilic and non-cytotoxic, showcasing their potential for skin wound applications given their enhanced performance at the macro- and nanoscale.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033, Project PID2020-112737 RB-I00es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectatomic force microscopyes_ES
dc.subjectchitosanes_ES
dc.subjectfilmses_ES
dc.subjecthalloysitees_ES
dc.titleDevelopment of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/pharmaceutics16101258
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional