Mostrar el registro sencillo del ítem

dc.contributor.authorHeydenreich, Sven
dc.contributor.authorMediavilla, Evencio
dc.contributor.authorJiménez Vicente, Jorge 
dc.contributor.authorVives-Arias, Héctor
dc.contributor.authorMuñoz, Jose A.
dc.date.accessioned2024-11-12T09:06:27Z
dc.date.available2024-11-12T09:06:27Z
dc.date.issued2024-10-17
dc.identifier.citationHeydenreich, S. et. al. A&A, 690, A307 (2024). [https://doi.org/10.1051/0004-6361/202449216]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96855
dc.description.abstractWhile elementary particles are the favored candidate for the elusive dark matter, primordial black holes (PBHs) have also been considered to fill that role. Gravitational microlensing is a very well-suited tool to detect and measure the abundance of compact objects in galaxies. Previous studies based on quasar microlensing exclude a significant presence of substellar to intermediate-mass black holes (BHs; ≲100 M⊙). However, these studies were based on a spatially uniform distribution of BHs while, according to current theories of PBH formation, they are expected to appear in clusters. We study the impact of clustering in microlensing flux magnification, finding that at large scales clusters act like giant pseudo-particles, strongly affecting the emission coming from the broad-line region, which can no longer be used to define the zero microlensing baseline. As an alternative, we set this baseline from the intrinsic magnification ratios of quasar images predicted by macro lens models and compared them with the observed flux ratios in emission lines, infrared, and radio. The (magnitude) differences are the flux-ratio anomalies attributable to microlensing, which we estimate for 35 image pairs corresponding to 12 lens systems. A Bayesian analysis indicates that the observed anomalies are incompatible with the existence of a significant population of clustered PBHs. Furthermore, we find that more compact clusters exhibit a stronger microlensing impact. Consequently, we conclude that clustering makes the existence of a significant population of BHs in the substellar to intermediate mass range even more unlikely.es_ES
dc.description.sponsorshipGrants PID2020-118687GB-C31, PID2020-118687GB-C32, and PID2020-118687GBC33, financed by the Spanish Ministerio de Ciencia e Innovación through MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipProject FQM-108 financed by Junta de Andalucíaes_ES
dc.description.sponsorshipGrant PTA2021- 020561-I, funded by MICIU/AEI/10.13039/501100011033 and by ESF+es_ES
dc.description.sponsorshipGerman Research Foundation (DFG SCHN 342/13)es_ES
dc.description.sponsorshipUC Santa Cruz, funded by NSF MRI grant AST 1828315es_ES
dc.language.isoenges_ES
dc.publisherEDP Scienceses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcosmology: observationses_ES
dc.subjectdark matteres_ES
dc.subjectearly Universees_ES
dc.titleThe abundance of clustered primordial black holes from quasar microlensinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1051/0004-6361/202449216
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional