Mostrar el registro sencillo del ítem

dc.contributor.authorKhaldi, Rohaifa 
dc.contributor.authorTabik, Siham 
dc.contributor.authorPuertas-Ruíz, Sergio
dc.contributor.authorPeñas De Giles, Julio 
dc.contributor.authorHodar Correa, José Antonio 
dc.contributor.authorZamora Rodríguez, Regino Jesús 
dc.contributor.authorAlcaraz Segura, Domingo 
dc.date.accessioned2024-11-12T08:31:18Z
dc.date.available2024-11-12T08:31:18Z
dc.date.issued2024-10-11
dc.identifier.citationKhaldi, R. et. al. International Journal of Applied Earth Observation and Geoinformation 134 (2024) 104191. [https://doi.org/10.1016/j.jag.2024.104191]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96849
dc.description.abstractMonitoring the distribution and size of long-living large shrubs, such as junipers, is crucial for assessing the long-term impacts of global change on high-mountain ecosystems. While deep learning models have shown remarkable success in object segmentation, adapting these models to detect shrub species with polymorphic nature remains challenging. In this research, we release a large dataset of individual shrub delineations on freely available satellite imagery and use an instance segmentation model to map all junipers over the treeline for an entire biosphere reserve (Sierra Nevada, Spain). To optimize performance, we introduced a novel dual data construction approach: using photo-interpreted (PI) data for model development and fieldwork (FW) data for validation. To account for the polymorphic nature of junipers during model evaluation, we developed a soft version of the Intersection over Union metric. Finally, we assessed the uncertainty of the resulting map in terms of canopy cover and density of shrubs per size class. Our model achieved an F1-score in shrub delineation of 87.87% on the PI data and 76.86% on the FW data. The R2 and RMSE of the observed versus predicted relationship were 0.63 and 6.67% for canopy cover, and 0.90 and 20.62 for shrub density. The greater density of larger shrubs in lower altitudes and smaller shrubs in higher altitudes observed in the model outputs was also present in the PI and FW data, suggesting an altitudinal uplift in the optimal performance of the species. This study demonstrates that deep learning applied on freely available high-resolution satellite imagery is useful to detect medium to large shrubs of high ecological value at the regional scale, which could be expanded to other high-mountains worldwide and to historical and fothcoming imagery.es_ES
dc.description.sponsorshipProject ‘‘Plan Complementario de I+D+i en el área de Biodiversidad (PCBIO)’’ funded by the European Union within the framework of the Recovery, Transformation and Resilience Plan - NextGenerationEUes_ES
dc.description.sponsorshipRegional Government of Andalusia (BIOD22_002)es_ES
dc.description.sponsorshipProject SmartFoRest (TED2021-129690B-I00, funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union NextGenerationEU/ PRTR)es_ES
dc.description.sponsorshipProject DETECTOR (ARNM- 256-UGR18 Universidad de Granada/FEDER) and LifeWatch-ERIC SmartEcomountains (LifeWatch-2019-10-UGR-01 Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER)es_ES
dc.description.sponsorshipDeepL-ISCO (A-TIC-458-UGR18 Ministerio de Ciencia e Innovación/ FEDER), and BigDDL-CET (P18-FR-4961 Ministerio de Ciencia e Innovación/ Universidad de Granada/FEDER)es_ES
dc.description.sponsorshipH2020 project ‘‘ECOPOTENTIAL: Improving Future Ecosystem Benefits Through Earth Observations’’es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation programme under grant agreement No 641762es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectVegetation mappinges_ES
dc.subjectRemote sensing es_ES
dc.subjectDeep learninges_ES
dc.titleIndividual mapping of large polymorphic shrubs in high mountains using satellite images and deep learninges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/H2020/FP7/641762es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jag.2024.104191
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional