Afficher la notice abrégée

dc.contributor.authorVelasco Sandoica, Mercedes
dc.contributor.authorMa, Ning
dc.contributor.authorGonzález López, José Andrés 
dc.date.accessioned2024-11-11T10:19:06Z
dc.date.available2024-11-11T10:19:06Z
dc.date.issued2024-11-11
dc.identifier.citationVelasco, M., Ma, N., Gonzalez-Lopez, J.A. (2024) Intelligent audio-based signal processing for automatic detection of obstructive sleep apnea. Proc. IberSPEECH 2024, 136-140, doi: 10.21437/IberSPEECH.2024-28es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96819
dc.descriptionThis work was partly supported by Innovate UK Knowledge Transfer Partnership (KTP) 012741 and UKRI MRC IAA Grant Ref: MR/X502728/1, and by grant PID2022-141378OBC22 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU.es_ES
dc.description.abstractIn this work, we propose a new acoustic-based method for the screening of obstructive sleep apnea (OSA) which employs breath and respiratory sounds recorded using an smartphone. In our proposed method, a set of acoustic parameters aimed at characterizing the respiratory and snore patterns of the patient are extracted from the sleep sound recordings. These include Snore Rate Variability (SVR), SET (Snore Energy Trench) parameters and Snore-to-Snore Intervals (SSI). Data fusion techniques were investigated, as well as the demographic characteristics of the subjects, which were assessed from the apneahypopnea index (AHI) estimated from all nightly recordings. Subsequently, a multiclass classification of each patient according to their OSA level was performed using several classifier methods, namely TabTransfomer, Support Vector Machines (SVM) and XGBoost. Real recordings made during home sleep apnea tests were used to develop and evaluate the proposed system. The TabTransformer-based classifier obtained the best results in estimating AHI severity, achieving a specificity of 0.65, accuracy rate of 0.65 and an sensitivity of 0.64, with an AUC score of 0.78. This offers the prospect of at-home screening for OSA.es_ES
dc.description.sponsorshipUK Knowledge Transfer Partnership (KTP) 012741es_ES
dc.description.sponsorshipUKRI MRC IAA Grant Ref: MR/X502728/1es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 PID2022-141378OBC22es_ES
dc.description.sponsorshipERDF/EUes_ES
dc.language.isoenges_ES
dc.publisherInternation Speech Communication Association (ISCA)es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_EN
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_EN
dc.titleIntelligent Audio-based Signal Processing for Automatic Detection of Obstructive Sleep Apneaes_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.21437/IberSPEECH.2024-28
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License