Afficher la notice abrégée

dc.contributor.authorJerónimo, Alejandro
dc.contributor.authorValenzuela Cansino, Olga 
dc.contributor.authorRojas Ruiz, Ignacio 
dc.date.accessioned2024-11-07T12:22:06Z
dc.date.available2024-11-07T12:22:06Z
dc.date.issued2024-09-24
dc.identifier.citationJerónimo, A.; Valenzuela, O.; Rojas, I. Statistical Analysis of nnU-Net Models for Lung Nodule Segmentation. J. Pers. Med. 2024, 14, 1016. https://doi.org/10.3390/jpm14101016es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96748
dc.description.abstractThis paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.es_ES
dc.description.sponsorshipGrant PID2021-128317OB-I00 and grant PCI2023-146016-2 funded by MICIU/AEI/ 10.13039/501100011033 and co-funded by the “European Union”es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectStatistical analysises_ES
dc.subjectComputed tomographyes_ES
dc.subjectLung nodulees_ES
dc.titleStatistical Analysis of nnU-Net Models for Lung Nodule Segmentationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/jpm14101016
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional