Mostrar el registro sencillo del ítem

dc.contributor.authorKhawaldeh, Bashar
dc.contributor.authorMora García, Antonio Miguel 
dc.contributor.authorFaris, Hossam
dc.date.accessioned2024-11-05T10:54:35Z
dc.date.available2024-11-05T10:54:35Z
dc.date.issued2024-10-30
dc.identifier.citationKhawaldeh, B. & Mora García, A.M. & Faris, H. AI 2024, 5, 2147–2169. [EISSN 2673-2688]es_ES
dc.identifier.issn2673-2688
dc.identifier.urihttps://hdl.handle.net/10481/96649
dc.description.abstractThe global community is awaiting the advent of a self-driving vehicle that is safe, reliable, and capable of navigating a diverse range of road conditions and terrains. This requires a lot of research, study, and optimization. Thus, this work focused on implementing, training, and optimizing a convolutional neural network (CNN) model, aiming to predict the steering angle during driving (one of the main issues). The considered dataset comprises images collected inside a car-driving simulator and further processed for augmentation and removal of unimportant details. In addition, an innovative data-balancing process was previously performed. A CNN model was trained with the dataset, conducting a comparison between several different standard optimizers. Moreover, evolutionary optimization was applied to optimize the model’s weights as well as the optimizers themselves. Several experiments were performed considering different approaches of genetic algorithms (GAs) along with other optimizers from the state of the art. The obtained results demonstrate that the GA is an effective optimization tool for this problem.es_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities MICIU/AEI/10.13039/501100011033 under project PID2023-147409NB-C21es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTR, under projects TED2021-131699B-I00 and TED2021- 129938B-I00es_ES
dc.description.sponsorshipProjects PID2020-113462RB-I00 and PID2020-115570GB-C22 of the Spanish Ministry of Economy and Competitivenesses_ES
dc.description.sponsorshipProject C-ING-179-UGR23 financed by the “Consejería de Universidades, Investigación e Innovación” (Andalusian Government, FEDER Program 2021-2027)es_ES
dc.description.sponsorshipProject PPJIA2023-031 (Plan Propio de Investigación y Transferencia UGR)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectautonomous drivinges_ES
dc.subjectartificial intelligencees_ES
dc.subjectconvolutional neural networkes_ES
dc.titleOptimizing Steering Angle Prediction in Self-Driving Vehicles Using Evolutionary Convolutional Neural Networkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional