Mostrar el registro sencillo del ítem

dc.contributor.authorPousibet Garrido, Antonio
dc.contributor.authorPolo Rodríguez, Aurora
dc.contributor.authorMoreno Pérez, Juan Antonio
dc.contributor.authorRuiz García, Isidoro 
dc.contributor.authorEscobedo Araque, Pablo 
dc.contributor.authorLópez Ruiz, Nuria 
dc.contributor.authorMarcen-Cinca, Noel
dc.contributor.authorMedina Quero, Javier
dc.contributor.authorCarvajal Rodríguez, Miguel Ángel 
dc.date.accessioned2024-11-05T07:58:55Z
dc.date.available2024-11-05T07:58:55Z
dc.date.issued2024-10-04
dc.identifier.citationPousibet Garrido, A. et. al. Sensors 2024, 24, 6422. [https://doi.org/10.3390/s24196422]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96638
dc.description.abstractThe aim of this current work is to identify three different gears of cross-country skiing utilizing embedded inertial measurement units and a suitable deep learning model. The cross-country style studied was the skating style during the uphill, which involved three different gears: symmetric gear pushing with poles on both sides (G3) and two asymmetric gears pushing with poles on the right side (G2R) or to the left side (G2L). To monitor the technique, inertial measurement units (IMUs) were affixed to the skis, recording acceleration and Euler angle data during the uphill tests performed by two experienced skiers using the gears under study. The initiation and termination points of the tests were controlled via Bluetooth by a smartphone using a custom application developed with Android Studio. Data were collected on the smartphone and stored on the SD memory cards included in each IMU. Convolutional neural networks combined with long short-term memory were utilized to classify and extract spatio-temporal features. The performance of the model in cross-user evaluations demonstrated an overall accuracy of 90%, and it achieved an accuracy of 98% in the cross-scene evaluations for individual users. These results indicate a promising performance of the developed system in distinguishing between different ski gears within skating styles, providing a valuable tool to enhance ski training and analysis.es_ES
dc.description.sponsorshipProjects “SensorSportLab III”, (Redes de Investigación en Ciencias del Deporte 2024) by Consejo Superior de Deportes (Ministerio de Cultura y Deporte)es_ES
dc.description.sponsorshipProject PPJIA2023-076, funded by the program ‘Proyectos de investigación precompetitivos para jóvenes investigadores, Modalidad A – Jóvenes Doctores,’ from the ‘Plan Propio de Investigación 2023’ of the University of Granadaes_ES
dc.description.sponsorshipProject IJC2020- 043307-I funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorship‘European Union NextGenerationEU/ PRTR’es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectinertial measurement unit (IMU)es_ES
dc.subjectdeep learninges_ES
dc.subjectcross-country skiinges_ES
dc.titleGear Classification in Skating Cross-Country Skiing Using Inertial Sensors and Deep Learninges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/s24196422
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional