Mostrar el registro sencillo del ítem
Gear Classification in Skating Cross-Country Skiing Using Inertial Sensors and Deep Learning
dc.contributor.author | Pousibet Garrido, Antonio | |
dc.contributor.author | Polo Rodríguez, Aurora | |
dc.contributor.author | Moreno Pérez, Juan Antonio | |
dc.contributor.author | Ruiz García, Isidoro | |
dc.contributor.author | Escobedo Araque, Pablo | |
dc.contributor.author | López Ruiz, Nuria | |
dc.contributor.author | Marcen-Cinca, Noel | |
dc.contributor.author | Medina Quero, Javier | |
dc.contributor.author | Carvajal Rodríguez, Miguel Ángel | |
dc.date.accessioned | 2024-11-05T07:58:55Z | |
dc.date.available | 2024-11-05T07:58:55Z | |
dc.date.issued | 2024-10-04 | |
dc.identifier.citation | Pousibet Garrido, A. et. al. Sensors 2024, 24, 6422. [https://doi.org/10.3390/s24196422] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/96638 | |
dc.description.abstract | The aim of this current work is to identify three different gears of cross-country skiing utilizing embedded inertial measurement units and a suitable deep learning model. The cross-country style studied was the skating style during the uphill, which involved three different gears: symmetric gear pushing with poles on both sides (G3) and two asymmetric gears pushing with poles on the right side (G2R) or to the left side (G2L). To monitor the technique, inertial measurement units (IMUs) were affixed to the skis, recording acceleration and Euler angle data during the uphill tests performed by two experienced skiers using the gears under study. The initiation and termination points of the tests were controlled via Bluetooth by a smartphone using a custom application developed with Android Studio. Data were collected on the smartphone and stored on the SD memory cards included in each IMU. Convolutional neural networks combined with long short-term memory were utilized to classify and extract spatio-temporal features. The performance of the model in cross-user evaluations demonstrated an overall accuracy of 90%, and it achieved an accuracy of 98% in the cross-scene evaluations for individual users. These results indicate a promising performance of the developed system in distinguishing between different ski gears within skating styles, providing a valuable tool to enhance ski training and analysis. | es_ES |
dc.description.sponsorship | Projects “SensorSportLab III”, (Redes de Investigación en Ciencias del Deporte 2024) by Consejo Superior de Deportes (Ministerio de Cultura y Deporte) | es_ES |
dc.description.sponsorship | Project PPJIA2023-076, funded by the program ‘Proyectos de investigación precompetitivos para jóvenes investigadores, Modalidad A – Jóvenes Doctores,’ from the ‘Plan Propio de Investigación 2023’ of the University of Granada | es_ES |
dc.description.sponsorship | Project IJC2020- 043307-I funded by MCIN/AEI/10.13039/501100011033 | es_ES |
dc.description.sponsorship | ‘European Union NextGenerationEU/ PRTR’ | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | inertial measurement unit (IMU) | es_ES |
dc.subject | deep learning | es_ES |
dc.subject | cross-country skiing | es_ES |
dc.title | Gear Classification in Skating Cross-Country Skiing Using Inertial Sensors and Deep Learning | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/s24196422 | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.