Show simple item record

dc.contributor.authorMora García, Antonio Miguel 
dc.contributor.authorVictoria-Mohammed, J.
dc.contributor.authorMedina Medina, Nuria 
dc.contributor.authorValenzuela Valdes, Juan Francisco 
dc.date.accessioned2024-10-29T13:03:12Z
dc.date.available2024-10-29T13:03:12Z
dc.date.issued2024-08-08
dc.identifier.citationPublished version: A. M. Mora, J. Victoria-Mohammed, N. Medina-Medina and J. F. Valenzuela-Valdés, "Applying Evolutionary Algorithms for Service Function Chaining in 5G Networks," 2024 IEEE Congress on Evolutionary Computation (CEC), Yokohama, Japan, 2024, pp. 1-8, DOI: 10.1109/CEC60901.2024.10611819es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96472
dc.descriptionThis work has been partially funded by projects TED2021-131699B-I00 and TED2021-129938B-I00 MICIU/AEI/10.13039/501100011033/ and by the European Union NextGenerationEU/PRTR. It has also been funded by projects PID2020-113462RB-I00 (ANIMALICOS) and PID2020-115570GB-C22 (DemocratAI::UGR) of the Spanish Ministry of Economy and Competitiveness; as well as project C-ING-179-UGR23 financed by the "Consejería de Universidades, Investigación e Innovación" (Andalusian Government, FEDER Program 2021-2027).es_ES
dc.description.abstractThe recent boom of 5G networks, coupled with the escalating demand among users for higher-capacity connections, is presenting a formidable challenge. 5G networks encompass a diverse array of advantageous technologies, prominently including Software- Defined Networking (SDN) together with Network Function Virtualization (NFV), in which a key problem is the optimal development of Service Function Chaining (SFC). This paper presents two approaches based on Genetic Algorithms (GAs), for the optimal composition of SFCs focused on network pathways, and tailored for the service chain required in different 5G connections (user service requests). The approaches have been tested on different instances of the problem with topologies including 6, 19 and 52 nodes. The obtained results are promising, showing optimal paths inside simple and complex topologies for every connection as well as for multiple connections.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 TED2021-131699B-I00, TED2021-129938B-I00es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness PID2020-113462RB-I00, PID2020-115570GB-C22es_ES
dc.description.sponsorshipAndalusian Government, FEDER Program 2021-2027 C-ING-179-UGR23es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject5Ges_ES
dc.subjectSoftware-Defined Networkses_ES
dc.subjectGenetic Algorithmes_ES
dc.subjectService Function Chaininges_ES
dc.subjectRoute Optimizationes_ES
dc.titleApplying Evolutionary Algorithms for Service Function Chaining in 5G Networkses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionAMes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional