Mostrar el registro sencillo del ítem

dc.contributor.authorBarranco Expósito, Francisco 
dc.contributor.authorFermüller, Cornelia
dc.contributor.authorAloimonos, Yiannis
dc.contributor.authorRos Vidal, Eduardo 
dc.date.accessioned2024-10-28T09:19:03Z
dc.date.available2024-10-28T09:19:03Z
dc.date.issued2021
dc.identifier.citationPublished version: Barranco Expósito, Francisco et al. Joint direct estimation of 3d geometry and 3d motion using spatio temporal gradients. Pattern Recognition Volume 113, May 2021, 107759. https://doi.org/10.1016/j.patcog.2020.107759es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96380
dc.descriptionThis work was supported by a Juan de la Cierva grant (IJCI-2014-21376), partially funded by the EU Project FitOptiVis through the ECSEL Joint Undertaking under GA n. 783162, and the Spanish National grant funded by MINECO through APCIN PCI2018‐093184, the Research Network RED2018-102511-T, and the National Science Foundation under grants SMA 1540917and CNS 1544797.es_ES
dc.description.abstractConventional image motion based structure from motion methods first compute optical flow, then solve for the 3D motion parameters based on the epipolar constraint, and finally recover the 3D geometry of the scene. However, errors in optical flow due to regularization can lead to large errors in 3D motion and structure. This paper investigates whether performance and consistency can be improved by avoiding optical flow estimation in the early stages of the structure from motion pipeline, and it proposes a new direct method based on image gradients (normal flow) only. The main idea lies in a reformulation of the positive-depth constraint, which allows the use of well-known minimization techniques to solve for 3D motion. The 3D motion estimate is then refined and structure estimated adding a regularization based on depth. Experimental comparisons on standard synthetic datasets and the real-world driving benchmark dataset KITTI using three different optic flow algorithms show that the method achieves better accuracy in all but one case. Furthermore, it outperforms existing normal flow based 3D motion estimation techniques. Finally, the recovered 3D geometry is shown to be also very accurate.es_ES
dc.description.sponsorshipJuan de la Cierva grant (IJCI-2014-21376)es_ES
dc.description.sponsorshipEU Project FitOptiVis 783162es_ES
dc.description.sponsorshipMINECO APCIN PCI2018‐093184es_ES
dc.description.sponsorshipResearch Network RED2018-102511-Tes_ES
dc.description.sponsorshipNational Science Foundation SMA 1540917, CNS 1544797es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject3D motiones_ES
dc.subjectEgomotiones_ES
dc.subjectStructure from motiones_ES
dc.subjectNormal flowes_ES
dc.titleJoint direct estimation of 3d geometry and 3d motion using spatio temporal gradientses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.patcog.2020.107759
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional