Show simple item record

dc.contributor.authorRichter, Christoph
dc.contributor.authorJentzsch, Sören
dc.contributor.authorHostettler, Rafael
dc.contributor.authorGarrido Alcázar, Jesús Alberto 
dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorKnoll, Alois C.
dc.contributor.authorRöhrbein, Florian
dc.contributor.authorSmagt, Patrick van der
dc.contributor.authorConradt, Jörg
dc.date.accessioned2024-10-25T07:28:45Z
dc.date.available2024-10-25T07:28:45Z
dc.date.issued2016-08-26
dc.identifier.citationC. Richter et al., "Musculoskeletal Robots: Scalability in Neural Control," in IEEE Robotics & Automation Magazine, vol. 23, no. 4, pp. 128-137, Dec. 2016, doi: 10.1109/MRA.2016.2535081es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96344
dc.description.abstractAnthropomimetic robots sense, behave, interact, and feel like humans. By this definition, they require human-like physical hardware and actuation but also brain-like control and sensing. The most self-evident realization to meet those requirements would be a human-like musculoskeletal robot with a brain-like neural controller. While both musculoskeletal robotic hardware and neural control software have existed for decades, a scalable approach that could be used to build and control an anthropomimetic human-scale robot has not yet been demonstrated. Combining Myorobotics, a framework for musculoskeletal robot development, with SpiNNaker, a neuromorphic computing platform, we present the proof of principle of a system that can scale to dozens of neurally controlled, physically compliant joints. At its core, it implements a closed-loop cerebellar model that provides real-time, low-level, neural control at minimal power consumption and maximal extensibility. Higher-order (e.g., cortical) neural networks and neuromorphic sensors like silicon retinae or cochleae can be incorporated.es_ES
dc.description.sponsorshipGerman Federal Ministry for Education and Research through the Bernstein Center for Computational Neuroscience Munich (01GQ1004A)es_ES
dc.description.sponsorshipEuropean Union Seventh Framework Program (FP7/2007-2013) under grant agreement 604102 (Human Brain Project)es_ES
dc.description.sponsorshipEuropean Union Seventh Framework Program (FP7/2007-2013) under grant agreement 288219 (Myorobotics)es_ES
dc.description.sponsorshipDLRes_ES
dc.description.sponsorshipSpanish National Project NEUROPACT (TIN2013-47069-P)es_ES
dc.description.sponsorshipUniversity of Granadaes_ES
dc.description.sponsorshipEuropean Union H2020 Framework Program (H2020-MSCA-IF-2014) under grant agreement 653019 (CEREBSENSING)es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMusculoskeletal Robots: Scalability in Neural Controles_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/604102es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/288219es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/MSC 653019es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/MRA.2016.2535081
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional