Afficher la notice abrégée

dc.contributor.authorRichter, Christoph
dc.contributor.authorJentzsch, Sören
dc.contributor.authorHostettler, Rafael
dc.contributor.authorGarrido Alcázar, Jesús Alberto 
dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorKnoll, Alois C.
dc.contributor.authorRöhrbein, Florian
dc.contributor.authorSmagt, Patrick van der
dc.contributor.authorConradt, Jörg
dc.date.accessioned2024-10-25T07:28:45Z
dc.date.available2024-10-25T07:28:45Z
dc.date.issued2016-08-26
dc.identifier.citationC. Richter et al., "Musculoskeletal Robots: Scalability in Neural Control," in IEEE Robotics & Automation Magazine, vol. 23, no. 4, pp. 128-137, Dec. 2016, doi: 10.1109/MRA.2016.2535081es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96344
dc.description.abstractAnthropomimetic robots sense, behave, interact, and feel like humans. By this definition, they require human-like physical hardware and actuation but also brain-like control and sensing. The most self-evident realization to meet those requirements would be a human-like musculoskeletal robot with a brain-like neural controller. While both musculoskeletal robotic hardware and neural control software have existed for decades, a scalable approach that could be used to build and control an anthropomimetic human-scale robot has not yet been demonstrated. Combining Myorobotics, a framework for musculoskeletal robot development, with SpiNNaker, a neuromorphic computing platform, we present the proof of principle of a system that can scale to dozens of neurally controlled, physically compliant joints. At its core, it implements a closed-loop cerebellar model that provides real-time, low-level, neural control at minimal power consumption and maximal extensibility. Higher-order (e.g., cortical) neural networks and neuromorphic sensors like silicon retinae or cochleae can be incorporated.es_ES
dc.description.sponsorshipGerman Federal Ministry for Education and Research through the Bernstein Center for Computational Neuroscience Munich (01GQ1004A)es_ES
dc.description.sponsorshipEuropean Union Seventh Framework Program (FP7/2007-2013) under grant agreement 604102 (Human Brain Project)es_ES
dc.description.sponsorshipEuropean Union Seventh Framework Program (FP7/2007-2013) under grant agreement 288219 (Myorobotics)es_ES
dc.description.sponsorshipDLRes_ES
dc.description.sponsorshipSpanish National Project NEUROPACT (TIN2013-47069-P)es_ES
dc.description.sponsorshipUniversity of Granadaes_ES
dc.description.sponsorshipEuropean Union H2020 Framework Program (H2020-MSCA-IF-2014) under grant agreement 653019 (CEREBSENSING)es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMusculoskeletal Robots: Scalability in Neural Controles_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/604102es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/288219es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/MSC 653019es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/MRA.2016.2535081
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional