Mostrar el registro sencillo del ítem

dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorSuckling, John
dc.contributor.authorÁlvarez Illán, Ignacio
dc.contributor.authorOrtiz, Andrés
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorSegovia Román, Fermín 
dc.contributor.authorSalas González, Diego 
dc.contributor.authorWang, Shuihua
dc.date.accessioned2024-10-24T12:31:43Z
dc.date.available2024-10-24T12:31:43Z
dc.date.issued2017-06-09
dc.identifier.citationJ. M. Górriz et al., "Case-Based Statistical Learning: A Non-Parametric Implementation With a Conditional-Error Rate SVM," in IEEE Access, vol. 5, pp. 11468-11478, 2017, doi: 10.1109/ACCESS.2017.2714579es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96334
dc.description.abstractMachine learning has been successfully applied to many areas of science and engineering. Some examples include time series prediction, optical character recognition, signal and image classification in biomedical applications for diagnosis and prognosis and so on. In the theory of semi-supervised learning, we have a training set and an unlabeled data, that are employed to fit a prediction model or learner, with the help of an iterative algorithm, such as the expectation-maximization algorithm. In this paper, a novel non-parametric approach of the so-called case-based statistical learning is proposed in a low-dimensional classification problem. This supervised feature selection scheme analyzes the discrete set of outcomes in the classification problem by hypothesis-testing and makes assumptions on these outcome values to obtain the most likely prediction model at the training stage. A novel prediction model is described in terms of the output scores of a confidence-based support vector machine classifier under class-hypothesis testing. To have a more accurate prediction by considering the unlabeled points, the distribution of unlabeled examples must be relevant for the classification problem. The estimation of the error rates from a well-trained support vector machines allows us to propose a non-parametric approach avoiding the use of Gaussian density function-based models in the likelihood ratio test.es_ES
dc.description.sponsorshipMINECO under the TEC2015-64718-R projectes_ES
dc.description.sponsorshipConsejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectStatistical learning and decision theoryes_ES
dc.subjectSupport vector machines (SVM)es_ES
dc.subjectHypothesis testinges_ES
dc.titleCase-Based Statistical Learning: A Non- Parametric Implementation With a Conditional-Error Rate SVMes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2017.2714579
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional