Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorOrtiz, Andrés
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorCastillo Barnes, Diego 
dc.date.accessioned2024-10-24T12:30:34Z
dc.date.available2024-10-24T12:30:34Z
dc.date.issued2019-06-17
dc.identifier.citationF. J. Martinez-Murcia, A. Ortiz, J. -M. Gorriz, J. Ramirez and D. Castillo-Barnes, "Studying the Manifold Structure of Alzheimer's Disease: A Deep Learning Approach Using Convolutional Autoencoders," in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 1, pp. 17-26, Jan. 2020, doi: 10.1109/JBHI.2019.2914970es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96329
dc.description.abstractMany classical machine learning techniques have been used to explore Alzheimer's disease (AD), evolving from image decomposition techniques such as principal component analysis toward higher complexity, non-linear decomposition algorithms. With the arrival of the deep learning paradigm, it has become possible to extract high-level abstract features directly from MRI images that internally describe the distribution of data in low-dimensional manifolds. In this work, we try a new exploratory data analysis of AD based on deep convolutional autoencoders. We aim at finding links between cognitive symptoms and the underlying neurodegeneration process by fusing the information of neuropsychological test outcomes, diagnoses, and other clinical data with the imaging features extracted solely via a data-driven decomposition of MRI. The distribution of the extracted features in different combinations is then analyzed and visualized using regression and classification analysis, and the influence of each coordinate of the autoencoder manifold over the brain is estimated. The imaging-derived markers could then predict clinical variables with correlations above 0.6 in the case of neuropsychological evaluation variables such as the MMSE or the ADAS11 scores, achieving a classification accuracy over 80% for the diagnosis of AD.es_ES
dc.description.sponsorshipMINECO/FEDER under the TEC2015-64718-R, RTI2018-098913-B-I00 and PGC2018-098813-B-C32 projectses_ES
dc.description.sponsorshipMICINN “Juan de la Cierva” Fellowshipes_ES
dc.description.sponsorshipAlzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904)es_ES
dc.description.sponsorshipDOD ADNI (Department of Defense award number W81XWH-12-2-0012)es_ES
dc.description.sponsorshipNational Institute on Aginges_ES
dc.description.sponsorshipNational Institute of Biomedical Imaging and Bioengineeringes_ES
dc.description.sponsorshipAbbViees_ES
dc.description.sponsorshipAlzheimer’s Associationes_ES
dc.description.sponsorshipAlzheimer’s Drug Discovery Foundationes_ES
dc.description.sponsorshipAraclon Bioteches_ES
dc.description.sponsorshipBioClinica, Inc.es_ES
dc.description.sponsorshipBiogenes_ES
dc.description.sponsorshipBristol-Myers Squibb Companyes_ES
dc.description.sponsorshipCereSpir, Inc.es_ES
dc.description.sponsorshipCogstatees_ES
dc.description.sponsorshipEisai Inc.es_ES
dc.description.sponsorshipElan Pharmaceuticals, Inc.es_ES
dc.description.sponsorshipEli Lilly and Companyes_ES
dc.description.sponsorshipEuroImmunes_ES
dc.description.sponsorshipF. Hoffmann-La Roche Ltdes_ES
dc.description.sponsorshipGenentech, Inc.es_ES
dc.description.sponsorshipFujirebioes_ES
dc.description.sponsorshipGE Healthcarees_ES
dc.description.sponsorshipIXICO Ltd.es_ES
dc.description.sponsorshipJanssen Alzheimer Immunotherapy Research & Development, LLC.es_ES
dc.description.sponsorshipJohnson & Johnson Pharmaceutical Research & Development LLC.es_ES
dc.description.sponsorshipLumosityes_ES
dc.description.sponsorshipLundbeckes_ES
dc.description.sponsorshipMerck & Co., Inc.es_ES
dc.description.sponsorshipMeso Scale Diagnostics, LLC.es_ES
dc.description.sponsorshipNeuroRx Researches_ES
dc.description.sponsorshipNeurotrack Technologieses_ES
dc.description.sponsorshipNovartis Pharmaceuticals Corporationes_ES
dc.description.sponsorshipPfizer Inc.es_ES
dc.description.sponsorshipPiramal Imaginges_ES
dc.description.sponsorshipServieres_ES
dc.description.sponsorshipTakeda Pharmaceutical Companyes_ES
dc.description.sponsorshipTransition Therapeuticses_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAlzheimer’s diseasees_ES
dc.subjectDeep learninges_ES
dc.subjectConvolutional autoencoderes_ES
dc.titleStudying the Manifold Structure of Alzheimer’s Disease: A Deep Learning Approach Using Convolutional Autoencoderses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JBHI.2019.2914970
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional