Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez Aguila, Amaury
dc.contributor.authorGarcía-Valdez, Mario
dc.contributor.authorMerelo Guervos, Juan Julián 
dc.contributor.authorCastañón Puga, Manuel
dc.contributor.authorCastillo López, Oscar
dc.date.accessioned2024-10-24T08:16:39Z
dc.date.available2024-10-24T08:16:39Z
dc.date.issued2021-05-14
dc.identifier.citationA. Hernandez-Aguila, M. García-Valdez, J. -J. Merelo-Guervós, M. Castañón-Puga and O. C. López, "Using Fuzzy Inference Systems for the Creation of Forex Market Predictive Models," in IEEE Access, vol. 9, pp. 69391-69404, 2021, doi: 10.1109/ACCESS.2021.3077910es_ES
dc.identifier.urihttps://hdl.handle.net/10481/96313
dc.description.abstractThis paper presents a method for creating Forex market predictive models using multi-agent and fuzzy systems, which have the objective of simulating the interactions that provoke changes in the price. Agents in the system represent traders performing buy and sell orders in a market, and fuzzy systems are used to model the rules followed by traders performing trades in a live market and intuitionistic fuzzy logic to model their decisions' indeterminacy. We use functions to restrict the agents' decisions, which make the agents become specialized at particular market conditions. These ``specialization'' functions use the grades of membership obtained from an agent's fuzzy system and thresholds obtained from training data sets, to determine if that agent is specialized enough to handle a market's current conditions.We have performed experiments and compared against the state of the art. Results demonstrate that our method obtains predictive errors (using mean absolute error) that are in the same order of magnitude than those errors obtained by models generated using deep learning and models generated by random forest, AdaBoost, XGBoost, and support-vector machines. Furthermore, we performed experiments that show that identifying specialized agents yields better results.es_ES
dc.description.sponsorshipProject DeepBio under Grant TIN2017-85727-C4-2-Pes_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEconomic forecasting es_ES
dc.subjectFuzzy systemses_ES
dc.subjectMulti-agent systemes_ES
dc.titleUsing Fuzzy Inference Systems for the Creation of Forex Market Predictive Modelses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2021.3077910
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional